PESSIMISTIC BILEVEL OPTIMIZATION

被引:79
|
作者
Wiesemann, Wolfram [1 ]
Tsoukalas, Angelos [2 ]
Kleniati, Polyxeni-Margarita [3 ]
Rustem, Berc [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
global optimization; pessimistic bilevel problem; computational complexity; PHASE-EQUILIBRIUM PROBLEMS; PENALTY-FUNCTION APPROACH; BI-LEVEL PROBLEMS; GLOBAL OPTIMIZATION; GENERALIZED SEMIINFINITE; PROGRAMMING-PROBLEMS; PARAMETER-ESTIMATION; PROCESS NETWORKS; ALGORITHM; CONSTRAINTS;
D O I
10.1137/120864015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a variant of the pessimistic bilevel optimization problem, which comprises constraints that must be satisfied for any optimal solution of a subordinate (lower-level) optimization problem. We present conditions that guarantee the existence of optimal solutions in such a problem, and we characterize the computational complexity of various subclasses of the problem. We then focus on problem instances that may lack convexity, but that satisfy a certain independence property. We develop convergent approximations for these instances, and we derive an iterative solution scheme that is reminiscent of the discretization techniques used in semi-infinite programming. We also present a computational study that illustrates the numerical behavior of our algorithm on standard benchmark instances.
引用
收藏
页码:353 / 380
页数:28
相关论文
共 50 条
  • [41] Contextual Stochastic Bilevel Optimization
    Hu, Yifan
    Wang, Jie
    Xie, Yao
    Krause, Andreas
    Kuhn, Daniel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] On Bilevel Optimization with Inexact Follower
    Zare, M. Hosein
    Prokopyev, Oleg A.
    Saure, Denis
    DECISION ANALYSIS, 2020, 17 (01) : 74 - 95
  • [43] Bilevel Optimization of Container Cranes
    Knauer, M.
    Bueskens, C.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 913 - 918
  • [44] Bilevel Noniterative Interconnected Optimization
    Stoilov, Todor A.
    Stoilova, Krasimira P.
    2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 638 - 643
  • [45] Intersection Cuts for Bilevel Optimization
    Fischetti, Matteo
    Ljubic, Ivana
    Monaci, Michele
    Sinnl, Markus
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 77 - 88
  • [46] Multicriteria Approach to Bilevel Optimization
    J. Fliege
    L. N. Vicente
    Journal of Optimization Theory and Applications, 2006, 131 : 209 - 225
  • [47] Partially-shared pessimistic bilevel multi-follower programming: concept, algorithm, and application
    Yue Zheng
    Zhihui Zhu
    Liuyang Yuan
    Journal of Inequalities and Applications, 2016
  • [48] Partially-shared pessimistic bilevel multi-follower programming: concept, algorithm, and application
    Zheng, Yue
    Zhu, Zhihui
    Yuan, Liuyang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 13
  • [49] Optimality conditions for pessimistic bilevel problems using convexificator (vol 24, pg 1399, 2020)
    Dempe, S.
    Gadhi, N.
    Lafhim, L.
    POSITIVITY, 2024, 28 (01)
  • [50] Robust mutant strain design by pessimistic optimization
    Apaydin, Meltem
    Xu, Liang
    Zeng, Bo
    Qian, Xiaoning
    BMC GENOMICS, 2017, 18