PESSIMISTIC BILEVEL OPTIMIZATION

被引:79
|
作者
Wiesemann, Wolfram [1 ]
Tsoukalas, Angelos [2 ]
Kleniati, Polyxeni-Margarita [3 ]
Rustem, Berc [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
global optimization; pessimistic bilevel problem; computational complexity; PHASE-EQUILIBRIUM PROBLEMS; PENALTY-FUNCTION APPROACH; BI-LEVEL PROBLEMS; GLOBAL OPTIMIZATION; GENERALIZED SEMIINFINITE; PROGRAMMING-PROBLEMS; PARAMETER-ESTIMATION; PROCESS NETWORKS; ALGORITHM; CONSTRAINTS;
D O I
10.1137/120864015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a variant of the pessimistic bilevel optimization problem, which comprises constraints that must be satisfied for any optimal solution of a subordinate (lower-level) optimization problem. We present conditions that guarantee the existence of optimal solutions in such a problem, and we characterize the computational complexity of various subclasses of the problem. We then focus on problem instances that may lack convexity, but that satisfy a certain independence property. We develop convergent approximations for these instances, and we derive an iterative solution scheme that is reminiscent of the discretization techniques used in semi-infinite programming. We also present a computational study that illustrates the numerical behavior of our algorithm on standard benchmark instances.
引用
收藏
页码:353 / 380
页数:28
相关论文
共 50 条
  • [31] Riemannian Bilevel Optimization
    Li, Jiaxiang
    Ma, Shiqian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26 : 1 - 44
  • [32] Decentralized bilevel optimization
    Chen, Xuxing
    Huang, Minhui
    Ma, Shiqian
    OPTIMIZATION LETTERS, 2024,
  • [33] Riemannian Bilevel Optimization
    Li, Jiaxiang
    Ma, Shiqian
    Journal of Machine Learning Research, 2025, 26
  • [34] Bilevel Optimization by Conditional Bayesian Optimization
    Dogan, Vedat
    Prestwich, Steven
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT I, 2024, 14505 : 243 - 258
  • [35] A novel approach to pessimistic bilevel problems. An application to the rank pricing problem with ties
    Calvete, Herminia I.
    Gale, Carmen
    Hernandez, Aitor
    Iranzo, Jose A.
    OPTIMIZATION, 2024,
  • [36] POPO: PESSIMISTIC OFFLINE POLICY OPTIMIZATION
    He, Qiang
    Hou, Xinwen
    Liu, Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4008 - 4012
  • [37] Special issue on bilevel optimization
    Brotcorne, Luce
    Fortz, Bernard
    Labbe, Martine
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2020, 8 (01) : 1 - 2
  • [38] Multicriteria approach to bilevel optimization
    Fliege, J.
    Vicente, L. N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (02) : 209 - 225
  • [39] Bilevel optimization and machine learning
    Bennett, Kristin P.
    Kunapuli, Gautam
    Hu, Jing
    Pang, Jong-Shi
    COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 25 - +
  • [40] Bilevel Highway Route Optimization
    Kang, Min Wook
    Yang, Ning
    Schonfeld, Paul
    Jha, Manoj
    TRANSPORTATION RESEARCH RECORD, 2010, (2197) : 107 - 117