PESSIMISTIC BILEVEL OPTIMIZATION

被引:79
|
作者
Wiesemann, Wolfram [1 ]
Tsoukalas, Angelos [2 ]
Kleniati, Polyxeni-Margarita [3 ]
Rustem, Berc [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
global optimization; pessimistic bilevel problem; computational complexity; PHASE-EQUILIBRIUM PROBLEMS; PENALTY-FUNCTION APPROACH; BI-LEVEL PROBLEMS; GLOBAL OPTIMIZATION; GENERALIZED SEMIINFINITE; PROGRAMMING-PROBLEMS; PARAMETER-ESTIMATION; PROCESS NETWORKS; ALGORITHM; CONSTRAINTS;
D O I
10.1137/120864015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a variant of the pessimistic bilevel optimization problem, which comprises constraints that must be satisfied for any optimal solution of a subordinate (lower-level) optimization problem. We present conditions that guarantee the existence of optimal solutions in such a problem, and we characterize the computational complexity of various subclasses of the problem. We then focus on problem instances that may lack convexity, but that satisfy a certain independence property. We develop convergent approximations for these instances, and we derive an iterative solution scheme that is reminiscent of the discretization techniques used in semi-infinite programming. We also present a computational study that illustrates the numerical behavior of our algorithm on standard benchmark instances.
引用
收藏
页码:353 / 380
页数:28
相关论文
共 50 条
  • [1] Pessimistic Bilevel Optimization: A Survey
    Liu, June
    Fan, Yuxin
    Chen, Zhong
    Zheng, Yue
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 725 - 736
  • [2] Pessimistic Bilevel Optimization: A Survey
    June Liu
    Yuxin Fan
    Zhong Chen
    Yue Zheng
    International Journal of Computational Intelligence Systems, 2018, 11 : 725 - 736
  • [3] Scholtes Relaxation Method for Pessimistic Bilevel Optimization
    Benchouk, Imane
    Jolaoso, Lateef
    Nachi, Khadra
    Zemkoho, Alain
    SET-VALUED AND VARIATIONAL ANALYSIS, 2025, 33 (02)
  • [4] A pessimistic bilevel stochastic problem for elastic shape optimization
    Burtscheidt, Johanna
    Claus, Matthias
    Conti, Sergio
    Rumpf, Martin
    Sassen, Josua
    Schultz, Rudiger
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1125 - 1151
  • [5] A pessimistic bilevel stochastic problem for elastic shape optimization
    Johanna Burtscheidt
    Matthias Claus
    Sergio Conti
    Martin Rumpf
    Josua Sassen
    Rüdiger Schultz
    Mathematical Programming, 2023, 198 : 1125 - 1151
  • [6] A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem
    Zeng, Bo
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (04) : 1128 - 1142
  • [7] On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management
    Kis, Tamas
    Kovacs, Andras
    Meszaros, Csaba
    ENERGIES, 2021, 14 (08)
  • [8] Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems
    M. Beatrice Lignola
    Jacqueline Morgan
    Journal of Optimization Theory and Applications, 2017, 173 : 183 - 202
  • [9] Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems
    Lignola, M. Beatrice
    Morgan, Jacqueline
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (01) : 183 - 202
  • [10] THE STANDARD PESSIMISTIC BILEVEL PROBLEM
    Lampariello, Lorenzo
    Sagratella, Simone
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1634 - 1656