Separatrix Splitting in 3D Volume-Preserving Maps

被引:7
|
作者
Lomeli, Hector E. [1 ]
Ramirez-Ros, Rafael [2 ]
机构
[1] Inst Tecnol Autonomo Mexico, Dept Math, Mexico City 01000, DF, Mexico
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2008年 / 7卷 / 04期
关键词
separatrix splitting; volume-preserving maps; primary heteroclinic set; Melnikov method; bifurcations;
D O I
10.1137/080713173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of integrable volume-preserving maps in R-3 with a two-dimensional heteroclinic connection of spherical shape between two fixed points of saddle-focus type. In other contexts, such structures are called Hill's spherical vortices or spheromaks. We study the splitting of the separatrix under volume-preserving perturbations using a discrete version of the Melnikov method. First, we establish several properties under general perturbations. For instance, we bound the topological complexity of the primary heteroclinic set in terms of the degree of some polynomial perturbations. We also give a sufficient condition for the splitting of the separatrix under some entire perturbations. A broad range of polynomial perturbations verify this sufficient condition. Finally, we describe the shape and bifurcations of the primary heteroclinic set for a specific perturbation.
引用
收藏
页码:1527 / 1557
页数:31
相关论文
共 50 条
  • [41] Volume-preserving Neural Networks
    MacDonald, Gordon
    Godbout, Andrew
    Gillcash, Bryn
    Cairns, Stephanie
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [42] Volume-preserving space deformation
    Aubert, F
    Bechmann, D
    COMPUTERS & GRAPHICS, 1997, 21 (05) : 625 - 639
  • [43] VOLUME-PRESERVING SCHEMES AND APPLICATIONS
    QIN, MZ
    ZHU, WJ
    CHAOS SOLITONS & FRACTALS, 1993, 3 (06) : 637 - 649
  • [44] Hyperbolicity in the volume-preserving scenario
    Arbieto, Alexander
    Catalan, Thiago
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1644 - 1666
  • [46] Bifurcations in Volume-Preserving Systems
    Broer, Henk W.
    Hanssmann, Heinz
    ACTA APPLICANDAE MATHEMATICAE, 2019, 162 (01) : 3 - 32
  • [47] On the Volume-Preserving Procrustes Problem
    黄建国
    沐建飞
    周解勇
    Journal of Shanghai University, 2004, (04) : 459 - 465
  • [48] Bifurcations in Volume-Preserving Systems
    Henk W. Broer
    Heinz Hanßmann
    Acta Applicandae Mathematicae, 2019, 162 : 3 - 32
  • [49] Volume-preserving space deformation
    Universite Louis Pasteur-Departement, Informatique, Strasbourg, France
    Comput Graphics (Pergamon), 5 (625-639):
  • [50] ON THE GROUP OF VOLUME-PRESERVING DIFFEOMORPHISMS
    ISMAGILOV, RS
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 17 (01): : 95 - 127