Separatrix Splitting in 3D Volume-Preserving Maps

被引:7
|
作者
Lomeli, Hector E. [1 ]
Ramirez-Ros, Rafael [2 ]
机构
[1] Inst Tecnol Autonomo Mexico, Dept Math, Mexico City 01000, DF, Mexico
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2008年 / 7卷 / 04期
关键词
separatrix splitting; volume-preserving maps; primary heteroclinic set; Melnikov method; bifurcations;
D O I
10.1137/080713173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of integrable volume-preserving maps in R-3 with a two-dimensional heteroclinic connection of spherical shape between two fixed points of saddle-focus type. In other contexts, such structures are called Hill's spherical vortices or spheromaks. We study the splitting of the separatrix under volume-preserving perturbations using a discrete version of the Melnikov method. First, we establish several properties under general perturbations. For instance, we bound the topological complexity of the primary heteroclinic set in terms of the degree of some polynomial perturbations. We also give a sufficient condition for the splitting of the separatrix under some entire perturbations. A broad range of polynomial perturbations verify this sufficient condition. Finally, we describe the shape and bifurcations of the primary heteroclinic set for a specific perturbation.
引用
收藏
页码:1527 / 1557
页数:31
相关论文
共 50 条
  • [21] Equivalent Conditions of Dominated Splitting for Volume-Preserving Diffeomorphisms
    Chao LIANG Applied Mathematical Department
    Acta Mathematica Sinica(English Series), 2007, 23 (09) : 1563 - 1576
  • [23] Computing the Conjugacy of Invariant Tori for Volume-Preserving Maps
    Fox, Adam M.
    Meiss, James D.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 557 - 579
  • [24] The Lyapunov exponents of generic volume-preserving and symplectic maps
    Bochi, J
    Viana, M
    ANNALS OF MATHEMATICS, 2005, 161 (03) : 1423 - 1485
  • [25] Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations
    Dullin, H. R.
    Meiss, J. D.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (01): : 76 - 128
  • [26] 3D Prostate TRUS Segmentation Using Globally Optimized Volume-Preserving Prior
    Qiu, Wu
    Rajchl, Martin
    Guo, Fumin
    Sun, Yue
    Ukwatta, Eranga
    Fenster, Aaron
    Yuan, Jing
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 796 - +
  • [27] Resonance zones and lobe volumes for exact volume-preserving maps
    Lomeli, H. E.
    Meiss, J. D.
    NONLINEARITY, 2009, 22 (08) : 1761 - 1789
  • [28] Birkhoff averages and the breakdown of invariant tori in volume-preserving maps
    Meiss, J. D.
    Sander, E.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 428
  • [29] Barriers to transport and mixing in volume-preserving maps with nonzero flux
    Fox, Adam M.
    de la Llave, Rafael
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 295 : 1 - 10
  • [30] Heteroclinic intersections between invariant circles of volume-preserving maps
    Lomelí, HE
    Meiss, JD
    NONLINEARITY, 2003, 16 (05) : 1573 - 1595