Thermal energy storage based on cold phase change materials: Charge phase assessment

被引:9
|
作者
Reboli, Tommaso [1 ]
Ferrando, Marco [1 ]
Traverso, Alberto [1 ]
Chiu, Justin N. W. [2 ]
机构
[1] Univ Genoa, DIME, I-16145 Genoa, Italy
[2] KTH Royal Inst Technol, S-10044 Stockholm, Sweden
关键词
Thermal energy storage; Phase change material; State of charge; Heat transfer fluid; Finned shell & tube; SUPERCOOLED WATER;
D O I
10.1016/j.applthermaleng.2022.119177
中图分类号
O414.1 [热力学];
学科分类号
摘要
Integration of thermal energy storage in energy systems provides flexibility in demand-supply management and in supporting novel operational schemes. In a combined heat and power cycle, it has been shown that integration of cold thermal energy storage is beneficial to fine-tune electric power and heating/cooling production profiles to better match the load demand. Latent heat storage systems have the advantage of compactness and low temperature swing, however storage performance analysis on large scale setup operating around the density inversion temperature is still limited. In this work, a shell & tube, latent heat based cold thermal energy storage was studied around the density inversion temperature of ice-water at 4 degrees C and the performance was characterized. Sensitivity analyses on heat transfer fluid flow rate, flow direction and inlet temperature were performed. The results show 27% power increase with doubled mass flow and 18% shorter charge time with 2 degrees C lower charge temperature. Contrary to general expectations during solidification, the cold thermal energy storage actually shows between 5% and 6% better thermal performance and reducing instant icing power jump of 36% due to supercooling with downwards cold heat transfer fluid flow in cooling charge cycle due to buoyancy change around density inversion temperature. This fact highlights the importance of accounting for the buoyancy effect due to density inversion when designing the operational schemes of large size cold thermal energy storage.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Review on phase change materials for cold thermal energy storage applications (vol 134, 110340, 2020)
    Nie, Binjian
    Palacios, Anabel
    Zou, Boyang
    Liu, Jiaxu
    Zhang, Tongtong
    Li, Yunren
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 139
  • [42] Synthesis and properties of microencapsulated phase change materials for thermal energy storage materials
    Konuklu, Yeliz
    Paksoy, Halime O.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 206 - 209
  • [43] Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage
    Borri, Emiliano
    Sze, Jia Yin
    Tafone, Alessio
    Romagnoli, Alessandro
    Li, Yongliang
    Comodi, Gabriele
    APPLIED ENERGY, 2020, 275
  • [44] Experimental charging/discharging studies of organic phase change materials for cold thermal energy storage application
    Chinnasamy, Veerakumar
    Appukuttan, Sreekumar
    ENERGY STORAGE, 2021, 3 (04)
  • [45] Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review
    Sidik, Nor Azwadi Che
    Kean, Tung Hao
    Chow, Hoong Kee
    Rajaandra, Aravinthan
    Rahman, Saidur
    Kaur, Jesbains
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 94 : 85 - 95
  • [46] Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes
    Vanaga, Ruta
    Narbuts, Janis
    Freimanis, Ritvars
    Zundans, Zigmars
    Blumberga, Andra
    ENERGIES, 2023, 16 (13)
  • [47] Nanostructures encapsulated phase change materials for sustained thermal energy storage in concrete: An overall assessment
    Huseien, Ghasan Fahim
    Sam, Abdul Rahman Mohd
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 2457 - 2463
  • [48] Thermal conductivity enhancement of phase change materials for thermal energy storage: A review
    Liu, Lingkun
    Su, Di
    Tang, Yaojie
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 : 305 - 317
  • [49] Thermal conductivity enhancement on phase change materials for thermal energy storage: A review
    Wu, Shaofei
    Yan, Ting
    Kuai, Zihan
    Pan, Weiguo
    ENERGY STORAGE MATERIALS, 2020, 25 : 251 - 295
  • [50] Thermal conductivity enhancement of phase change materials for thermal energy storage: A review
    Fan, Liwu
    Khodadadi, J. M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01): : 24 - 46