Thermal energy storage based on cold phase change materials: Charge phase assessment

被引:9
|
作者
Reboli, Tommaso [1 ]
Ferrando, Marco [1 ]
Traverso, Alberto [1 ]
Chiu, Justin N. W. [2 ]
机构
[1] Univ Genoa, DIME, I-16145 Genoa, Italy
[2] KTH Royal Inst Technol, S-10044 Stockholm, Sweden
关键词
Thermal energy storage; Phase change material; State of charge; Heat transfer fluid; Finned shell & tube; SUPERCOOLED WATER;
D O I
10.1016/j.applthermaleng.2022.119177
中图分类号
O414.1 [热力学];
学科分类号
摘要
Integration of thermal energy storage in energy systems provides flexibility in demand-supply management and in supporting novel operational schemes. In a combined heat and power cycle, it has been shown that integration of cold thermal energy storage is beneficial to fine-tune electric power and heating/cooling production profiles to better match the load demand. Latent heat storage systems have the advantage of compactness and low temperature swing, however storage performance analysis on large scale setup operating around the density inversion temperature is still limited. In this work, a shell & tube, latent heat based cold thermal energy storage was studied around the density inversion temperature of ice-water at 4 degrees C and the performance was characterized. Sensitivity analyses on heat transfer fluid flow rate, flow direction and inlet temperature were performed. The results show 27% power increase with doubled mass flow and 18% shorter charge time with 2 degrees C lower charge temperature. Contrary to general expectations during solidification, the cold thermal energy storage actually shows between 5% and 6% better thermal performance and reducing instant icing power jump of 36% due to supercooling with downwards cold heat transfer fluid flow in cooling charge cycle due to buoyancy change around density inversion temperature. This fact highlights the importance of accounting for the buoyancy effect due to density inversion when designing the operational schemes of large size cold thermal energy storage.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Developing phase change materials for thermal energy storage using polyols with cold crystallization property
    Huang, Xuelin
    Liu, Dan
    Zhao, Le
    Zhang, Guangwu
    He, Rui
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [22] Recent Advances on The Applications of Phase Change Materials in Cold Thermal Energy Storage: A Critical Review
    Rashid, Farhan Lafta
    Al-Obaidi, Mudhar A.
    Dulaimi, Anmar
    Bernardo, Luis Filipe Almeida
    Redha, Zeina Ali Abdul
    Hoshi, Hisham A.
    Mahood, Hameed B.
    Hashim, Ahmed
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (08):
  • [23] Phase Change Materials for Thermal Energy Storage: A Concise Review
    Prasad, N. V. Krishna
    Naidu, K. Chandra Babu
    Basha, D. Baba
    NANO, 2024,
  • [24] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [25] Thermal Analysis of Encapsulated Phase Change Materials for Energy Storage
    Zhao, Weihuan
    Oztekin, Alparslan
    Neti, Sudhakar
    Tuzla, Kemal
    Misiolek, Wojciech M.
    Chen, John C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 831 - 837
  • [26] Recent advances in phase change materials for thermal energy storage
    White, Mary Anne
    Kahwaji, Samer
    Noel, John A.
    CHEMICAL COMMUNICATIONS, 2024, 60 (13) : 1690 - 1706
  • [27] Advancement in phase change materials for thermal energy storage applications
    Kant, Karunesh
    Shukla, A.
    Sharma, Atul
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 82 - 92
  • [28] Study of Thermal Energy Storage using Phase Change Materials
    Paul, Dobrescu
    Ionescu, Constantin
    Necula, Horia
    2017 8TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (CIEM), 2017, : 162 - 166
  • [29] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02): : 318 - 345
  • [30] Polyols as phase change materials for surplus thermal energy storage
    Gunasekara, Saman Nimali
    Pan, Ruijun
    Chiu, Justin Ningwei
    Martin, Viktoria
    APPLIED ENERGY, 2016, 162 : 1439 - 1452