Observation of photoluminescence from a natural van der Waals heterostructure

被引:0
|
作者
Costa, Viviane Z. [1 ]
Baker, Bryce [1 ]
Sinn, Hon-Loen [1 ]
Miller, Addison [1 ]
Watanabe, K. [2 ]
Taniguchi, T. [2 ]
Newaz, Akm [1 ]
机构
[1] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA
[2] Natl Inst Mat Sci, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会;
关键词
GRAPHENE; OPTOELECTRONICS; INSULATOR;
D O I
10.1063/5.0089439
中图分类号
O59 [应用物理学];
学科分类号
摘要
van der Waals heterostructures comprised of two-dimensional (2D) materials offer a platform to obtain materials by design with unique electronic properties. Franckeite (Fr) is a naturally occurring van der Waals heterostructure comprised of two distinct alternately stacked semiconducting layers: (i) SnS2 layer and (ii) Pb3SbS4. Though both layers in the heterostructure are semiconductors, the photoluminescence from Franckeite remains elusive. Here, we report the observation of photoluminescence (PL) from Franckeite. We observed two PL peaks at ~ 1.97 and ~2.12 eV at 1.5 K. By varying the temperature from 1.5 to 280 K, we found that the PL peak position blueshifts and the integrated intensity decreases slowly as we increase the temperature. We observed linear dependence of photoluminescence integrated intensity on excitation laser power, indicating that the photoluminescence is originating from free excitons in the SnS2 layer of Fr. By comparing the PL from Fr with the PL from a monolayer MoS2, we determined that the PL quantum efficiency from Fr is an order of magnitude lower than that of a monolayer MoS2. Our study provides a fundamental understanding of the optical behavior in a complex naturally occurring van der Waals heterostructure and may pave an avenue toward developing nanoscale optical and optoelectronic devices with tailored properties. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Structural superlubricity in graphene/GaSe van der Waals heterostructure
    Li, Hong
    Wang, Qiaohui
    Xu, Peipei
    Si, Lina
    Dou, Zhaoliang
    Yan, Hongjuan
    Yang, Ye
    Zhou, Gang
    Qing, Tao
    Zhang, Shaohua
    Liu, Fengbin
    PHYSICS LETTERS A, 2022, 452
  • [32] Artificial superconducting Kondo lattice in a van der Waals heterostructure
    Kai Fan
    Heng Jin
    Bing Huang
    Guijing Duan
    Rong Yu
    Zhen-Yu Liu
    Hui-Nan Xia
    Li-Si Liu
    Yao Zhang
    Tao Xie
    Qiao-Yin Tang
    Gang Chen
    Wen-Hao Zhang
    F. C. Chen
    X. Luo
    W. J. Lu
    Y. P. Sun
    Ying-Shuang Fu
    Nature Communications, 15 (1)
  • [33] Diabatic Hamiltonian construction in van der Waals heterostructure complexes
    Xie, Yu
    Sun, Huijuan
    Zheng, Qijing
    Zhao, Jin
    Ren, Hao
    Lan, Zhenggang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (48) : 27484 - 27492
  • [34] Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure
    Steinleitner, Philipp
    Merkl, Philipp
    Graft, Alexander
    Nagler, Philipp
    Watanabe, Kenji
    Taniguchi, Takashi
    Zipfel, Jonas
    Schueller, Christian
    Korn, Tobias
    Chernikov, Alexey
    Brem, Samuel
    Selig, Malte
    Berghauser, Gunnar
    Malic, Ermin
    Huber, Rupert
    NANO LETTERS, 2018, 18 (02) : 1402 - 1409
  • [35] Mixed-Dimensional Van der Waals Heterostructure Photodetector
    Zhou, Jiaoyan
    Xie, Mingzhang
    Ji, Huan
    Cui, Anyang
    Ye, Yan
    Jiang, Kai
    Shang, Liyan
    Zhang, Jinzhong
    Hu, Zhigao
    Chu, Junhao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18674 - 18682
  • [36] Remote modulation doping in van der Waals heterostructure transistors
    Lee, Donghun
    Lee, Jea Jung
    Kim, Yoon Seok
    Kim, Yeon Ho
    Kim, Jong Chan
    Huh, Woong
    Lee, Jaeho
    Park, Sungmin
    Jeong, Hu Young
    Kim, Young Duck
    Lee, Chul-Ho
    NATURE ELECTRONICS, 2021, 4 (09) : 664 - 670
  • [37] Magnetotransport and lateral confinement in an InSe van der Waals Heterostructure
    Lee, Yongjin
    Pisoni, Riccardo
    Overweg, Hiske
    Eich, Marius
    Rickhaus, Peter
    Patane, Arnalia
    Kudrynskyi, Zakhar R.
    Kovalyuk, Zakhar D.
    Gorbachev, Roman
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    2D MATERIALS, 2018, 5 (03):
  • [38] Silicene/GaAs van der Waals heterostructure for optoelectronic applications
    Mubashir A. Kharadi
    Jhuma Saha
    Journal of Materials Science, 2022, 57 : 21324 - 21338
  • [39] Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors
    Zeng, Zhouxiaosong
    Ge, Cuihuan
    Braun, Kai
    Eberle, Martin
    Wang, Yufan
    Zheng, Biyuan
    Zhu, Chenguang
    Sun, Xingxia
    Huang, Lanyu
    Luo, Ziyu
    Chen, Ying
    Duan, Huigao
    Wang, Shuangyin
    Li, Dong
    Gao, Fei
    Pan, Anlian
    Wang, Xiao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (30)
  • [40] Transport and localization of indirect excitons in a van der Waals heterostructure
    Fowler-Gerace, L. H.
    Zhou, Zhiwen
    Szwed, E. A.
    Choksy, D. J.
    Butov, L. V.
    NATURE PHOTONICS, 2024, 18 (08) : 823 - 828