SECANT: a biology-guided semi-supervised method for clustering, classification, and annotation of single-cell multi-omics

被引:0
|
作者
Wang, Xinjun [1 ,2 ]
Xu, Zhongli [3 ,4 ]
Hu, Haoran [1 ]
Zhou, Xueping [1 ]
Zhang, Yanfu [5 ]
Lafyatis, Robert [6 ]
Chen, Kong [6 ]
Huang, Heng [5 ]
Ding, Ying [1 ]
Duerr, Richard H. [6 ]
Chen, Wei [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15213 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[3] Univ Pittsburgh, Dept Pediat, Pittsburgh, PA 15224 USA
[4] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China
[5] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Dept Med, Pittsburgh, PA 15261 USA
来源
PNAS NEXUS | 2022年 / 1卷 / 04期
基金
美国国家卫生研究院;
关键词
scRNA-Seq; CITE-Seq; single-cell multi-omics; semi-supervised learning; MESSENGER-RNA; CHROMATIN ACCESSIBILITY; INTEGRATED ANALYSIS; EXPRESSION; QUANTIFICATION; IDENTIFICATION; PROTEIN;
D O I
10.1093/pnasnexus/pgac165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent advance of single cell sequencing (scRNA-seq) technology such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) allows researchers to quantify cell surface protein abundance and RNA expression simultaneously at single cell resolution. Although CITE-seq and other similar technologies have gained enormous popularity, novel methods for analyzing this type of single cell multi-omics data are in urgent need. A limited number of available tools utilize data-driven approach, which may undermine the biological importance of surface protein data. In this study, we developed SECANT, a biology-guided SEmi-supervised method for Clustering, classification, and ANnoTation of single-cell multi-omics. SECANT is used to analyze CITE-seq data, or jointly analyze CITE-seq and scRNA-seq data. The novelties of SECANT include (1) using confident cell type label identified from surface protein data as guidance for cell clustering, (2) providing general annotation of confident cell types for each cell cluster, (3) utilizing cells with uncertain or missing cell type label to increase performance, and (4) accurate prediction of confident cell types for scRNA-seq data. Besides, as a model-based approach, SECANT can quantify the uncertainty of the results through easily interpretable posterior probability, and our framework can be potentially extended to handle other types of multi-omics data. We successfully demonstrated the validity and advantages of SECANT via simulation studies and analysis of public and in-house datasets from multiple tissues. We believe this new method will be complementary to existing tools for characterizing novel cell types and make new biological discoveries using single-cell multi-omics data.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Applications of single-cell multi-omics in liver cancer
    Peeters, Frederik
    Cappuyns, Sarah
    Pique-Gili, Marta
    Phillips, Gino
    Verslype, Chris
    Lambrechts, Diether
    Dekervel, Jeroen
    JHEP REPORTS, 2024, 6 (07)
  • [42] scMFG: a single-cell multi-omics integration method based on feature grouping
    Ma, Litian
    Liu, Jingtao
    Sun, Wei
    Zhao, Chenguang
    Yu, Liang
    BMC GENOMICS, 2025, 26 (01):
  • [43] Single Cell Atlas: a single-cell multi-omics human cell encyclopedia
    Pan, Lu
    Parini, Paolo
    Tremmel, Roman
    Loscalzo, Joseph
    Lauschke, Volker
    Maron, Bradley
    Paci, Paola
    Ernberg, Ingemar
    Tan, Nguan Soon
    Liao, Zehuan
    Yin, Weiyao
    Rengarajan, Sundararaman
    Li, Xuexin
    GENOME BIOLOGY, 2024, 25 (01)
  • [44] Semi-supervised Clustering Method for Multi-density Data
    Atwa, Walid
    Li, Kan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2015, 2015, 9052 : 313 - 319
  • [45] scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network
    Xu, Zhongyuan
    Luo, Jiawei
    Xiong, Zehao
    BIOINFORMATICS, 2022, 38 (22) : 5042 - 5048
  • [46] Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours
    Nie, Feiping
    Cai, Guohao
    Li, Xuelong
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2408 - 2414
  • [47] Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities
    Yang, Yang
    Zhan, De-Chuan
    Wu, Yi-Feng
    Liu, Zhi-Bin
    Xiong, Hui
    Jiang, Yuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (02) : 682 - 695
  • [48] GSTRPCA: irregular tensor singular value decomposition for single-cell multi-omics data clustering
    Cui, Lubin
    Guo, Guiliang
    Ng, Michael K.
    Zou, Quan
    Qiu, Yushan
    BRIEFINGS IN BIOINFORMATICS, 2024, 26 (01)
  • [49] Multi-Omics and Single-Cell Omics: New Tools in Drug Target Discovery
    Loscalzo, Joseph
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2024, 44 (04) : 759 - 762
  • [50] Medicinal plants enter the single-cell multi-omics era
    Burlat, Vincent
    Papon, Nicolas
    Courdavault, Vincent
    TRENDS IN PLANT SCIENCE, 2023, 28 (11) : 1205 - 1207