SECANT: a biology-guided semi-supervised method for clustering, classification, and annotation of single-cell multi-omics

被引:0
|
作者
Wang, Xinjun [1 ,2 ]
Xu, Zhongli [3 ,4 ]
Hu, Haoran [1 ]
Zhou, Xueping [1 ]
Zhang, Yanfu [5 ]
Lafyatis, Robert [6 ]
Chen, Kong [6 ]
Huang, Heng [5 ]
Ding, Ying [1 ]
Duerr, Richard H. [6 ]
Chen, Wei [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15213 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[3] Univ Pittsburgh, Dept Pediat, Pittsburgh, PA 15224 USA
[4] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China
[5] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Dept Med, Pittsburgh, PA 15261 USA
来源
PNAS NEXUS | 2022年 / 1卷 / 04期
基金
美国国家卫生研究院;
关键词
scRNA-Seq; CITE-Seq; single-cell multi-omics; semi-supervised learning; MESSENGER-RNA; CHROMATIN ACCESSIBILITY; INTEGRATED ANALYSIS; EXPRESSION; QUANTIFICATION; IDENTIFICATION; PROTEIN;
D O I
10.1093/pnasnexus/pgac165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent advance of single cell sequencing (scRNA-seq) technology such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) allows researchers to quantify cell surface protein abundance and RNA expression simultaneously at single cell resolution. Although CITE-seq and other similar technologies have gained enormous popularity, novel methods for analyzing this type of single cell multi-omics data are in urgent need. A limited number of available tools utilize data-driven approach, which may undermine the biological importance of surface protein data. In this study, we developed SECANT, a biology-guided SEmi-supervised method for Clustering, classification, and ANnoTation of single-cell multi-omics. SECANT is used to analyze CITE-seq data, or jointly analyze CITE-seq and scRNA-seq data. The novelties of SECANT include (1) using confident cell type label identified from surface protein data as guidance for cell clustering, (2) providing general annotation of confident cell types for each cell cluster, (3) utilizing cells with uncertain or missing cell type label to increase performance, and (4) accurate prediction of confident cell types for scRNA-seq data. Besides, as a model-based approach, SECANT can quantify the uncertainty of the results through easily interpretable posterior probability, and our framework can be potentially extended to handle other types of multi-omics data. We successfully demonstrated the validity and advantages of SECANT via simulation studies and analysis of public and in-house datasets from multiple tissues. We believe this new method will be complementary to existing tools for characterizing novel cell types and make new biological discoveries using single-cell multi-omics data.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Single-Cell Multi-Omics and Its Prospective Application in Cancer Biology
    Peng, Anghui
    Mao, Xiying
    Zhong, Jiawei
    Fan, Shuxin
    Hu, Youjin
    PROTEOMICS, 2020, 20 (13)
  • [12] Spectral clustering of single-cell multi-omics data on multilayer graphs
    Zhang, Shuyi
    Leistico, Jacob R.
    Cho, Raymond J.
    Cheng, Jeffrey B.
    Song, Jun S.
    BIOINFORMATICS, 2022, 38 (14) : 3600 - 3608
  • [13] Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation
    Chen, Liang
    He, Qiuyan
    Zhai, Yuyao
    Deng, Minghua
    BIOINFORMATICS, 2021, 37 (06) : 775 - 784
  • [14] Advances in single-cell multi-omics profiling
    Bai, Dongsheng
    Peng, Jinying
    Yi, Chengqi
    RSC CHEMICAL BIOLOGY, 2021, 2 (02): : 441 - 449
  • [15] Single-Cell Technologies: Advances in Single-Cell Migration and Multi-Omics
    Moarefian, Maryam
    Capossela, Antonia McDonnell
    Eom, Ryan
    Aran, Kiana
    GEN BIOTECHNOLOGY, 2022, 1 (03): : 246 - 261
  • [16] Microtechnologies for single-cell and spatial multi-omics
    Yanxiang Deng
    Zhiliang Bai
    Rong Fan
    Nature Reviews Bioengineering, 2023, 1 (10): : 769 - 784
  • [17] Single-Cell Analyses in the Multi-omics Era
    Kalluri, Raghu
    Mead, Adam J.
    di Magliano, Marina Pasca
    Filbin, Mariella
    Carmeliet, Peter
    Amit, Ido
    CANCER CELL, 2020, 38 (01) : 9 - 10
  • [18] Semi-supervised classification method based on spectral clustering
    Chen, Xi
    Journal of Networks, 2014, 9 (02) : 384 - 392
  • [19] Semi-supervised single-link clustering method
    Reddy, Y. C. A. Padmanabha
    Viswanath, P.
    Reddy, B. Eswara
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH, 2016, : 1005 - 1009
  • [20] scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
    Wang, Zile
    Wang, Haiyun
    Zhao, Jianping
    Zheng, Chunhou
    BMC BIOINFORMATICS, 2023, 24 (01)