Tunable cryogenic terahertz cavity for strong light-matter coupling in complex materials

被引:12
|
作者
Jarc, Giacomo [1 ,2 ]
Mathengattil, Shahla Yasmin [1 ,2 ]
Giusti, Francesca [1 ,2 ]
Barnaba, Maurizio [2 ]
Singh, Abhishek [3 ]
Montanaro, Angela [1 ,2 ]
Glerean, Filippo [1 ,2 ]
Rigoni, Enrico Maria [1 ,2 ]
Dal Zilio, Simone [4 ]
Winnerl, Stephan [3 ]
Fausti, Daniele [1 ,2 ]
机构
[1] Univ Trieste, Dept Phys, I-34127 Trieste, Italy
[2] Elettra Sincrotrone Trieste SCpA, I-34127 Trieste, Italy
[3] Helmholtz Zent Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstrasse 400, D-01328 Dresden, Germany
[4] CNR IOM TASC Lab, I-34139 Trieste, Italy
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 03期
基金
欧洲研究理事会;
关键词
SPIN-PEIERLS TRANSITION; SPECTROSCOPY; ATOM;
D O I
10.1063/5.0080045
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light-matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regimes between a tunable optical cavity in cryogenic environment and low energy degrees of freedom, such as phonons, magnons, or charge fluctuations. We describe here the setup developed that allows for the positioning of crystalline samples in an optical cavity of different quality factors, the tuning of the cavity length at cryogenic temperatures, and its optical characterization with a broadband time domain THz spectrometer (0.2-6 THz). We demonstrate the versatility of the setup by studying the vibrational strong coupling in CuGeO3 single crystal at cryogenic temperatures. (c) Published under an exclusive license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Extreme renormalisations of dimer eigenmodes by strong light-matter coupling
    Sturges, Thomas J.
    Repaen, Taavi
    Downing, Charles A.
    Rockstuhl, Carsten
    Stobinska, Magdalena
    NEW JOURNAL OF PHYSICS, 2020, 22 (10)
  • [32] Topological insulator nanoparticles for strong light-matter interaction in the terahertz regime
    Thanopulos, Ioannis
    Yannopapas, Vassilios
    Paspalakis, Emmanuel
    OPTICS LETTERS, 2022, 47 (19) : 5240 - 5243
  • [33] Polaron Photoconductivity in the Weak and Strong Light-Matter Coupling Regime
    Krainova, Nina
    Grede, Alex J.
    Tsokkou, Demetra
    Banerji, Natalie
    Giebink, Noel C.
    PHYSICAL REVIEW LETTERS, 2020, 124 (17)
  • [34] Strong light-matter coupling in quantum chemistry and quantum photonics
    Flick, Johannes
    Rivera, Nicholas
    Narang, Prineha
    NANOPHOTONICS, 2018, 7 (09) : 1479 - 1501
  • [35] Toward Collective Chemistry under Strong Light-Matter Coupling
    Gu, Bing
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 16 (01): : 317 - 323
  • [36] Electronic excitations in organic microcavities with strong light-matter coupling
    Agranovich, VM
    La Rocca, GC
    SOLID STATE COMMUNICATIONS, 2005, 135 (9-10) : 544 - 553
  • [37] Scouting for strong light-matter coupling signatures in Raman spectra
    Takele, Wassie Mersha
    Piatkowski, Lukasz
    Wackenhut, Frank
    Gawinkowski, Sylwester
    Meixner, Alfred J.
    Waluk, Jacek
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (31) : 16837 - 16846
  • [38] Surface plasmons and strong light-matter coupling in metallic nanoshells
    Alpeggiani, Filippo
    D'Agostino, Stefania
    Andreani, Lucio Claudio
    PHYSICAL REVIEW B, 2012, 86 (03):
  • [39] Deep strong light-matter coupling in plasmonic nanoparticle crystals
    Mueller, Niclas S.
    Okamura, Yu
    Vieira, Bruno G. M.
    Juergensen, Sabrina
    Lange, Holger
    Barros, Eduardo B.
    Schulz, Florian
    Reich, Stephanie
    NATURE, 2020, 583 (7818) : 780 - +
  • [40] Regimes of strong light-matter coupling under incoherent excitation
    del Valle, E.
    Laussy, F. P.
    PHYSICAL REVIEW A, 2011, 84 (04):