Tunable cryogenic terahertz cavity for strong light-matter coupling in complex materials

被引:12
|
作者
Jarc, Giacomo [1 ,2 ]
Mathengattil, Shahla Yasmin [1 ,2 ]
Giusti, Francesca [1 ,2 ]
Barnaba, Maurizio [2 ]
Singh, Abhishek [3 ]
Montanaro, Angela [1 ,2 ]
Glerean, Filippo [1 ,2 ]
Rigoni, Enrico Maria [1 ,2 ]
Dal Zilio, Simone [4 ]
Winnerl, Stephan [3 ]
Fausti, Daniele [1 ,2 ]
机构
[1] Univ Trieste, Dept Phys, I-34127 Trieste, Italy
[2] Elettra Sincrotrone Trieste SCpA, I-34127 Trieste, Italy
[3] Helmholtz Zent Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstrasse 400, D-01328 Dresden, Germany
[4] CNR IOM TASC Lab, I-34139 Trieste, Italy
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 03期
基金
欧洲研究理事会;
关键词
SPIN-PEIERLS TRANSITION; SPECTROSCOPY; ATOM;
D O I
10.1063/5.0080045
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light-matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regimes between a tunable optical cavity in cryogenic environment and low energy degrees of freedom, such as phonons, magnons, or charge fluctuations. We describe here the setup developed that allows for the positioning of crystalline samples in an optical cavity of different quality factors, the tuning of the cavity length at cryogenic temperatures, and its optical characterization with a broadband time domain THz spectrometer (0.2-6 THz). We demonstrate the versatility of the setup by studying the vibrational strong coupling in CuGeO3 single crystal at cryogenic temperatures. (c) Published under an exclusive license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems
    Granizo, Evelyn
    Kriukova, Irina
    Escudero-Villa, Pedro
    Samokhvalov, Pavel
    Nabiev, Igor
    NANOMATERIALS, 2024, 14 (18)
  • [22] Photon Correlations in Systems with Strong Light-Matter Coupling
    Schneebeli, L.
    Kira, M.
    Koch, S. W.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1856 - +
  • [23] Observation of strong light-matter coupling by spectroscopic ellipsometry
    Hilmer, H.
    Sturm, C.
    Schmidt-Grund, R.
    Rheinlaender, B.
    Grundmann, M.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (01) : 19 - 23
  • [24] Universality of open microcavities for strong light-matter coupling
    Krol, M.
    Lempicka-Mirek, K.
    Rechcinska, K.
    Furman, M.
    Nogajewski, K.
    Mazur, R.
    Morawiak, P.
    Piecek, W.
    Pacuski, W.
    Szczytko, J.
    Pietka, B.
    OPTICAL MATERIALS EXPRESS, 2023, 13 (09) : 2651 - 2661
  • [25] Linear response theory for cavity QED materials at arbitrary light-matter coupling strengths
    Roman-Roche, Juan
    Gomez-Leon, Alvaro
    Luis, Fernando
    Zueco, David
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [26] Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials
    Al-Ani, Ibrahim A. M.
    As'ham, Khalil
    Klochan, Oleh
    Hattori, Haroldo T.
    Huang, Lujun
    Miroshnichenko, Andrey E.
    JOURNAL OF OPTICS, 2022, 24 (05)
  • [27] Terahertz Light-Matter Interaction beyond Unity Coupling Strength
    Bayer, Andreas
    Pozimski, Marcel
    Schambeck, Simon
    Schuh, Dieter
    Huber, Rupert
    Bougeard, Dominique
    Lange, Christoph
    NANO LETTERS, 2017, 17 (10) : 6340 - 6344
  • [28] Magnetopolariton in bilayer graphene: A tunable ultrastrong light-matter coupling
    Liu, Tao
    Wang, Qi Jie
    PHYSICAL REVIEW B, 2014, 89 (12)
  • [29] Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths
    Ashida, Yuto
    Imamoglu, Atac
    Demler, Eugene
    PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [30] Light-matter coupling and quantum geometry in moire materials
    Topp, Gabriel E.
    Eckhardt, Christian J.
    Kennes, Dante M.
    Sentef, Michael A.
    Torma, Paivi
    PHYSICAL REVIEW B, 2021, 104 (06)