Optimal constructions of quantum and synchronizable codes from repeated-root cyclic codes of length 3ps

被引:0
|
作者
Dinh, Hai Q. [1 ]
Nguyen, Bac T. [2 ,3 ]
Paravee, M. [4 ]
Thi, Hiep L. [5 ]
Vo, Thang M. [6 ,7 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44240 USA
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[5] Thu Dau Mot Univ, Fac Educ, Binh Duong, Vietnam
[6] Ind Univ Vinh, Dept Gen Educ, Vinh City, Nghe An, Vietnam
[7] Ohio Univ, Math Dept, Athens, OH 45701 USA
关键词
Cyclic codes; Repeated-root codes; Hamming distance; MDS codes; Quantum MDS codes; Quantum synchronizable codes; ERROR-CORRECTING CODES; CONSTACYCLIC CODES; MDS CODES; NEGACYCLIC CODES; EXPLICIT REPRESENTATION; ENTANGLEMENT; ENUMERATION; DISTANCE; 4P(S);
D O I
10.1007/s11128-023-03958-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the CSS and Steane's constructions to establish quantum errorcorrecting codes (briefly, QEC codes) from cyclic codes of length 3p(s) over F-pm. We obtain several new classes of QEC codes in the sense that their parameters are different from all the previous constructions. Among them, we identify all quantum MDS (briefly, qMDS) codes, i.e., optimal quantum codes with respect to the quantum Singleton bound. In addition, we construct quantum synchronizable codes (briefly, QSCs) from cyclic codes of length 3p(s) over Fpm. Furthermore, we give many new QSC stoenrich the variety of available QSCs. Alot of them are QSCs codes with shorter lengths and much larger minimum distances than known non-primitive narrow-sense BCH codes.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Squaring construction for repeated-root cyclic codes
    Vinocha, O.P.
    Bhullar, J.S.
    Gupta, Manish
    World Academy of Science, Engineering and Technology, 2010, 65 : 1002 - 1004
  • [32] AMDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [33] MDS symbol-pair codes from repeated-root cyclic codes
    Junru Ma
    Jinquan Luo
    Designs, Codes and Cryptography, 2022, 90 : 121 - 137
  • [34] Squaring construction for repeated-root cyclic codes
    Vinocha, Dr.
    Bhullar, Dr.
    Gupta, Manish
    World Academy of Science, Engineering and Technology, 2010, 41 : 1002 - 1004
  • [35] Uniform constant composition codes derived from repeated-root cyclic codes
    da Rocha, V. C., Jr.
    de Lemos-Neto, J. S.
    Alcoforado, M. L. M. G.
    ELECTRONICS LETTERS, 2018, 54 (03) : 146 - 148
  • [36] Repeated-root constacyclic codes of length p1pt2ps and their dual codes
    Wu, Hongfeng
    Zhu, Li
    AIMS MATHEMATICS, 2023, 8 (06): : 12793 - 12818
  • [37] Repeated-Root Constacyclic Codes of Length klps
    Liu, Yan
    Shi, Minjia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 2009 - 2027
  • [38] Repeated-root constacyclic codes of length nlps
    Liu, Li
    Li, Lanqiang
    Wang, Liqi
    Zhu, Shixin
    DISCRETE MATHEMATICS, 2017, 340 (09) : 2250 - 2261
  • [39] REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 3lmps
    Liu, Yan
    Shi, Minjia
    Dinh, Hai Q.
    Sriboonchitta, Songsak
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 359 - 378
  • [40] On the Hamming distances of repeated-root constacyclic codes of length 4ps
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Liu, Hongwei
    Sriboonchitta, Songsak
    DISCRETE MATHEMATICS, 2019, 342 (05) : 1456 - 1470