Optimal constructions of quantum and synchronizable codes from repeated-root cyclic codes of length 3ps

被引:0
|
作者
Dinh, Hai Q. [1 ]
Nguyen, Bac T. [2 ,3 ]
Paravee, M. [4 ]
Thi, Hiep L. [5 ]
Vo, Thang M. [6 ,7 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44240 USA
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
[5] Thu Dau Mot Univ, Fac Educ, Binh Duong, Vietnam
[6] Ind Univ Vinh, Dept Gen Educ, Vinh City, Nghe An, Vietnam
[7] Ohio Univ, Math Dept, Athens, OH 45701 USA
关键词
Cyclic codes; Repeated-root codes; Hamming distance; MDS codes; Quantum MDS codes; Quantum synchronizable codes; ERROR-CORRECTING CODES; CONSTACYCLIC CODES; MDS CODES; NEGACYCLIC CODES; EXPLICIT REPRESENTATION; ENTANGLEMENT; ENUMERATION; DISTANCE; 4P(S);
D O I
10.1007/s11128-023-03958-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the CSS and Steane's constructions to establish quantum errorcorrecting codes (briefly, QEC codes) from cyclic codes of length 3p(s) over F-pm. We obtain several new classes of QEC codes in the sense that their parameters are different from all the previous constructions. Among them, we identify all quantum MDS (briefly, qMDS) codes, i.e., optimal quantum codes with respect to the quantum Singleton bound. In addition, we construct quantum synchronizable codes (briefly, QSCs) from cyclic codes of length 3p(s) over Fpm. Furthermore, we give many new QSC stoenrich the variety of available QSCs. Alot of them are QSCs codes with shorter lengths and much larger minimum distances than known non-primitive narrow-sense BCH codes.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] On generalizations of repeated-root cyclic codes
    Zimmermann, KH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) : 641 - 649
  • [22] New quantum codes and entanglement-assisted quantum codes from repeated-root cyclic codes of length 2 r p s
    Li, Lanqiang
    Cao, Ziwen
    Wu, Tingting
    Liu, Li
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [23] Quantum MDS and synchronizable codes from cyclic codes of length 5ps over Fpm
    Dinh, Hai Q.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 931 - 964
  • [24] On the Construction of Several Classes of Optimal Repeated-Root Cyclic Codes
    Huang S.-J.
    Sun Z.-H.
    Zhu S.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (01): : 142 - 148
  • [25] On non-binary quantum repeated-root cyclic codes
    Wang, Liqi
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (03)
  • [26] Repeated-root constacyclic codes of length ℓtps and their dual codes
    Anuradha Sharma
    Cryptography and Communications, 2015, 7 : 229 - 255
  • [27] Quantum MDS and Synchronizable Codes From Cyclic and Negacyclic Codes of Length 2ps Over Fpm
    Dinh, Hai Q.
    Nguyen, Bac T.
    Yamaka, Woraphon
    IEEE ACCESS, 2020, 8 : 124608 - 124623
  • [28] Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps over Fpm
    Dinh, Hai Q.
    Le, Ha T.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    QUANTUM INFORMATION PROCESSING, 2021, 20 (11)
  • [29] Repeated-root constacyclic codes of length 3lps and their dual codes
    Liu, Li
    Li, Lanqiang
    Kai, Xiaoshan
    Zhu, Shixin
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 : 269 - 295
  • [30] MDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 121 - 137