COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS

被引:0
|
作者
Wu, Tianqi [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
关键词
harmonic maps; conformal maps; point clouds; DISCRETE UNIFORMIZATION THEOREM; COMBINATORIAL YAMABE FLOW; C-INFINITY-CONVERGENCE; LEVEL-SET METHOD; PARAMETERIZATION; LANDMARK; SURFACES; REGISTRATION; MAPPINGS; ALGORITHMS;
D O I
10.4208/jcm.2206-m2020-0251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its epsilon-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks. To the best of the authors' knowledge, our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces.
引用
收藏
页码:880 / 909
页数:30
相关论文
共 50 条
  • [41] Point singularities and nommiqueness for the heat flow for harmonic maps
    Bertsch, M
    Dal Passo, R
    Pisante, A
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) : 1135 - 1160
  • [42] On conformal Gauss maps
    Burstall, F. E.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (06) : 989 - 994
  • [43] ON THE CONFORMAL TRIHARMONIC MAPS
    Ouakkas, Seddik
    Reguig, Yasmina
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 607 - 629
  • [44] Conformal complementarity maps
    Barbon, Jose L. F.
    Rabinovici, Eliezer
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [45] Conformal complementarity maps
    José L. F. Barbón
    Eliezer Rabinovici
    Journal of High Energy Physics, 2013
  • [46] Computing a Fixed Point of Contraction Maps in Polynomial Queries
    Chen, Xi
    Li, Yuhao
    Yannakakis, Mihalis
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1364 - 1373
  • [47] Maps for electron clouds
    Iriso, U
    Peggs, S
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2005, 8 (02): : 65 - 73
  • [48] Weak compactness of wave maps and harmonic maps
    Freire, A
    Muller, S
    Struwe, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06): : 725 - 754
  • [49] Weak compactness of wave maps and harmonic maps
    Dept. of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, United States
    不详
    不详
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 6 (725-754):
  • [50] Harmonic maps and harmonic morphisms
    J. C. Wood
    Journal of Mathematical Sciences, 1999, 94 (2) : 1263 - 1269