COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS

被引:0
|
作者
Wu, Tianqi [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
关键词
harmonic maps; conformal maps; point clouds; DISCRETE UNIFORMIZATION THEOREM; COMBINATORIAL YAMABE FLOW; C-INFINITY-CONVERGENCE; LEVEL-SET METHOD; PARAMETERIZATION; LANDMARK; SURFACES; REGISTRATION; MAPPINGS; ALGORITHMS;
D O I
10.4208/jcm.2206-m2020-0251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its epsilon-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks. To the best of the authors' knowledge, our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces.
引用
收藏
页码:880 / 909
页数:30
相关论文
共 50 条