Fit for purpose: Modeling wholesale electricity markets realistically with multi-agent deep reinforcement learning

被引:8
|
作者
Harder, Nick [1 ]
Qussous, Ramiz [1 ]
Weidlich, Anke [1 ]
机构
[1] Univ Freiburg, Dept Sustainable Syst Engn INATECH, Emmy Noether Str 2, D-79110 Freiburg, Germany
关键词
Agent-based modeling; Reinforcement learning; Machine learning; Electricity markets; Multi-agent reinforcement learning; DECISION-MAKING;
D O I
10.1016/j.egyai.2023.100295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity markets need to continuously evolve to address the growing complexity of a predominantly renewable energy-driven, highly interconnected, and sector-integrated energy system. Simulation models allow testing market designs before implementation, which offers advantages for market robustness and efficiency. This work presents a novel approach to simulate the electricity market by using multi-agent deep reinforcement learning for representing revenue-maximizing market participants. The learning capability makes the agents highly adaptive, thereby facilitating a rigorous performance evaluation of market mechanisms under challenging yet practical conditions. Through distinct test cases that vary the number and size of learning agents in an energy-only market, we demonstrate the ability of the proposed method to diagnose market manipulation and reflect market liquidity. Our method is highly scalable, as demonstrated by a case study of the German wholesale energy market with 145 learning agents. This makes the model well-suited for analyzing large and complex electricity markets. The capability of the presented simulation approach facilitates market design analysis, thereby contributing to the establishment future-proof electricity markets to support the energy transition.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Learning to school in dense configurations with multi-agent deep reinforcement learning
    Zhu, Yi
    Pang, Jian-Hua
    Gao, Tong
    Tian, Fang-Bao
    BIOINSPIRATION & BIOMIMETICS, 2023, 18 (01)
  • [42] Learning multi-agent communication with double attentional deep reinforcement learning
    Hangyu Mao
    Zhengchao Zhang
    Zhen Xiao
    Zhibo Gong
    Yan Ni
    Autonomous Agents and Multi-Agent Systems, 2020, 34
  • [43] Multi-Agent Deep Reinforcement Learning for Simulating Centralized Double-Sided Auction Electricity Market
    Yin, Baocai
    Weng, Haoen
    Hu, Yongli
    Xi, Jiayang
    Ding, Pinggang
    Liu, Jia
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 518 - 529
  • [44] Multi-agent based modeling and learning approach for intelligent day-ahead bidding strategy in wholesale electricity market
    Chandrakala, K. R. M. Vijaya
    Kiran, P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
  • [45] Multi-Agent Deep Reinforcement Learning for Distributed Load Restoration
    Linh Vu
    Tuyen Vu
    Thanh Long Vu
    Srivastava, Anurag
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1749 - 1760
  • [46] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    Applied Intelligence, 2023, 53 : 9261 - 9269
  • [47] Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Song, H. Francis
    Hughes, Edward
    Burch, Neil
    Dunning, Iain
    Whiteson, Shimon
    Botvinick, Matthew M.
    Bowling, Michael
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [48] Competitive Multi-Agent Deep Reinforcement Learning with Counterfactual Thinking
    Wang, Yue
    Wan, Yao
    Zhang, Chenwei
    Bai, Lu
    Cui, Lixin
    Yu, Philip S.
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1366 - 1371
  • [49] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2022, 2022-July
  • [50] Cooperative Multi-Agent Deep Reinforcement Learning in Soccer Domains
    Ocana, Jim Martin Catacora
    Riccio, Francesco
    Capobianco, Roberto
    Nardi, Daniele
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1865 - 1867