Fit for purpose: Modeling wholesale electricity markets realistically with multi-agent deep reinforcement learning

被引:8
|
作者
Harder, Nick [1 ]
Qussous, Ramiz [1 ]
Weidlich, Anke [1 ]
机构
[1] Univ Freiburg, Dept Sustainable Syst Engn INATECH, Emmy Noether Str 2, D-79110 Freiburg, Germany
关键词
Agent-based modeling; Reinforcement learning; Machine learning; Electricity markets; Multi-agent reinforcement learning; DECISION-MAKING;
D O I
10.1016/j.egyai.2023.100295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electricity markets need to continuously evolve to address the growing complexity of a predominantly renewable energy-driven, highly interconnected, and sector-integrated energy system. Simulation models allow testing market designs before implementation, which offers advantages for market robustness and efficiency. This work presents a novel approach to simulate the electricity market by using multi-agent deep reinforcement learning for representing revenue-maximizing market participants. The learning capability makes the agents highly adaptive, thereby facilitating a rigorous performance evaluation of market mechanisms under challenging yet practical conditions. Through distinct test cases that vary the number and size of learning agents in an energy-only market, we demonstrate the ability of the proposed method to diagnose market manipulation and reflect market liquidity. Our method is highly scalable, as demonstrated by a case study of the German wholesale energy market with 145 learning agents. This makes the model well-suited for analyzing large and complex electricity markets. The capability of the presented simulation approach facilitates market design analysis, thereby contributing to the establishment future-proof electricity markets to support the energy transition.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [32] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [33] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE Access, 2020, 8 : 119000 - 119009
  • [34] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [35] Teaching on a Budget in Multi-Agent Deep Reinforcement Learning
    Ilhan, Ercument
    Gow, Jeremy
    Perez-Liebana, Diego
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [36] Research Progress of Multi-Agent Deep Reinforcement Learning
    Ding, Shi-Feiu
    Du, Weiu
    Zhang, Jianu
    Guo, Li-Liu
    Ding, Ding
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (07): : 1547 - 1567
  • [37] Multi-Agent Reinforcement Learning is A Sequence Modeling Problem
    Wen, Muning
    Kuba, Jakub Grudzien
    Lin, Runji
    Zhang, Weinan
    Wen, Ying
    Wang, Jun
    Yang, Yaodong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [39] Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
    Jiang, Mingxin
    Hai, Tao
    Pan, Zhigeng
    Wang, Haiyan
    Jia, Yinjie
    Deng, Chao
    IEEE ACCESS, 2019, 7 : 32400 - 32407
  • [40] Learning multi-agent communication with double attentional deep reinforcement learning
    Mao, Hangyu
    Zhang, Zhengchao
    Xiao, Zhen
    Gong, Zhibo
    Ni, Yan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2020, 34 (01)