From Quantum Curves to Topological String Partition Functions

被引:5
|
作者
Coman, Ioana [1 ,3 ]
Pomoni, Elli [1 ]
Teschner, Jorg [1 ,2 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-20607 Hamburg, Germany
[2] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
[3] Univ Amsterdam, Inst Phys, NL-1098 XH Amsterdam, Netherlands
关键词
TAU FUNCTIONS; WITTEN THEORY; EQUATIONS; GEOMETRY; INVARIANCE; ALGEBRAS; BUNDLES; SYSTEMS;
D O I
10.1007/s00220-022-04579-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes the reconstruction of the topological string partition function for certain local Calabi-Yau (CY) manifolds from the quantum curve, an ordinary differential equation obtained by quantising their defining equations. Quantum curves are characterised as solutions to a Riemann-Hilbert problem. The isomonodromic tau-functions associated to these Riemann-Hilbert problems admit a family of natural normalisations labelled by the chambers in the extended Kahler moduli space of the local CY under consideration. The corresponding isomonodromic tau-functions admit a series expansion of generalised theta series type from which one can extract the topological string partition functions for each chamber.
引用
收藏
页码:1501 / 1548
页数:48
相关论文
共 50 条
  • [31] From topological recursion to wave functions and PDEs quantizing hyperelliptic curves
    Eynard, Bertrand
    Garcia-Failde, Elba
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [32] The wave function behavior of the open topological string partition function on the conifold
    Kashani-Poor, Amir-Kian
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [33] ON THE PARTITION-FUNCTION OF STRING THEORIES DEFINED ON ALGEBRAIC-CURVES
    FERRARI, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (21): : 5131 - 5154
  • [34] Quantum algorithm for approximating partition functions
    Wocjan, Pawel
    Chiang, Chen-Fu
    Nagaj, Daniel
    Abeyesinghe, Anura
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [35] Quantum corrections for general partition functions
    Evangelista, LR
    Malacarne, LC
    Mendes, RS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 253 (1-4) : 507 - 516
  • [36] The minimal length and quantum partition functions
    Abbasiyan-Motlaq, M.
    Pedram, P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [37] Quantum curves from refined topological recursion: The genus 0 case
    Kidwai, Omar
    Osuga, Kento
    ADVANCES IN MATHEMATICS, 2023, 432
  • [38] Resurgence of Refined Topological Strings and Dual Partition Functions
    Alexandrov, Sergey
    Marino, Marcos
    Pioline, Boris
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [39] Bernoulli number identities from quantum field theory and topological string theory
    Dunne, Gerald V.
    Schubert, Christian
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (02) : 225 - 249
  • [40] PARTITION-FUNCTIONS FOR THE RIGID STRING AND MEMBRANE AT ANY TEMPERATURE
    ELIZALDE, E
    LESEDUARTE, S
    ODINTSOV, SD
    PHYSICAL REVIEW D, 1993, 48 (04) : 1757 - 1767