Quantum curves from refined topological recursion: The genus 0 case

被引:1
|
作者
Kidwai, Omar [1 ]
Osuga, Kento [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
基金
英国工程与自然科学研究理事会;
关键词
Topological recursion; Matrix models; WKB analysis; Topological strings; GROMOV-WITTEN INVARIANTS; WEIL-PETERSSON VOLUMES; INTERSECTION THEORY; HITCHIN SYSTEMS; MATRIX MODELS; MODULI SPACE; WKB; STRINGS; OPERS;
D O I
10.1016/j.aim.2023.109253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate geometrically (without reference to physical models) a refined topological recursion applicable to genus zero curves of degree two, inspired by Chekhov-Eynard and Marchal, introducing new degrees of freedom in the process. For such curves, we prove the fundamental properties of the recursion analogous to the unrefined case. We show the quantization of spectral curves due to Iwaki-Koike-Takei can be generalized to this setting and give the explicit formula, which turns out to be related to the unrefined case by a simple transformation. For an important collection of examples, we write down the quantum curves and find that in the NekrasovShatashvili limit, they take an especially simple form.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] Quantum curves and topological recursion
    Norbury, Paul
    STRING-MATH 2014, 2016, 93 : 41 - 65
  • [2] Topological recursion and mirror curves
    Bouchard, Vincent
    Sulkowski, Piotr
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (05) : 1443 - 1483
  • [3] Refined Topological Recursion Revisited: Properties and Conjectures
    Osuga, Kento
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (12)
  • [4] Topological recursion for irregular spectral curves
    Do, Norman
    Norbury, Paul
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 398 - 426
  • [5] Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion
    Hahn, Marvin Anas
    van Ittersum, Jan-Willem M.
    Leid, Felix
    ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (02): : 239 - 296
  • [6] From topological recursion to wave functions and PDEs quantizing hyperelliptic curves
    Eynard, Bertrand
    Garcia-Failde, Elba
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [7] A Genus-3 Topological Recursion Relation
    Takashi Kimura
    Xiaobo Liu
    Communications in Mathematical Physics, 2006, 262 : 645 - 661
  • [8] A genus-3 topological recursion relation
    Kimura, T
    Liu, XB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) : 645 - 661
  • [9] From scalar fields on quantum spaces to blobbed topological recursion
    Branahl, Johannes
    Hock, Alexander
    Grosse, Harald
    Wulkenhaar, Raimar
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (42)
  • [10] Topological Recursion for Symplectic Volumes of Moduli Spaces of Curves
    Bennett, Julia
    Cochran, David
    Safnuk, Brad
    Woskoff, Kaitlin
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (02) : 331 - 358