Quantum curves from refined topological recursion: The genus 0 case

被引:1
|
作者
Kidwai, Omar [1 ]
Osuga, Kento [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
基金
英国工程与自然科学研究理事会;
关键词
Topological recursion; Matrix models; WKB analysis; Topological strings; GROMOV-WITTEN INVARIANTS; WEIL-PETERSSON VOLUMES; INTERSECTION THEORY; HITCHIN SYSTEMS; MATRIX MODELS; MODULI SPACE; WKB; STRINGS; OPERS;
D O I
10.1016/j.aim.2023.109253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate geometrically (without reference to physical models) a refined topological recursion applicable to genus zero curves of degree two, inspired by Chekhov-Eynard and Marchal, introducing new degrees of freedom in the process. For such curves, we prove the fundamental properties of the recursion analogous to the unrefined case. We show the quantization of spectral curves due to Iwaki-Koike-Takei can be generalized to this setting and give the explicit formula, which turns out to be related to the unrefined case by a simple transformation. For an important collection of examples, we write down the quantum curves and find that in the NekrasovShatashvili limit, they take an especially simple form.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:52
相关论文
共 50 条