Quantum curves from refined topological recursion: The genus 0 case

被引:1
|
作者
Kidwai, Omar [1 ]
Osuga, Kento [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
基金
英国工程与自然科学研究理事会;
关键词
Topological recursion; Matrix models; WKB analysis; Topological strings; GROMOV-WITTEN INVARIANTS; WEIL-PETERSSON VOLUMES; INTERSECTION THEORY; HITCHIN SYSTEMS; MATRIX MODELS; MODULI SPACE; WKB; STRINGS; OPERS;
D O I
10.1016/j.aim.2023.109253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate geometrically (without reference to physical models) a refined topological recursion applicable to genus zero curves of degree two, inspired by Chekhov-Eynard and Marchal, introducing new degrees of freedom in the process. For such curves, we prove the fundamental properties of the recursion analogous to the unrefined case. We show the quantization of spectral curves due to Iwaki-Koike-Takei can be generalized to this setting and give the explicit formula, which turns out to be related to the unrefined case by a simple transformation. For an important collection of examples, we write down the quantum curves and find that in the NekrasovShatashvili limit, they take an especially simple form.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:52
相关论文
共 50 条
  • [21] Open topological recursion relations in genus 1 and integrable systems
    Oscar Brauer Gomez
    Alexandr Buryak
    Journal of High Energy Physics, 2021
  • [22] From Quantum Curves to Topological String Partition Functions
    Ioana Coman
    Elli Pomoni
    Jörg Teschner
    Communications in Mathematical Physics, 2023, 399 : 1501 - 1548
  • [23] From Quantum Curves to Topological String Partition Functions
    Coman, Ioana
    Pomoni, Elli
    Teschner, Jorg
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 1501 - 1548
  • [24] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [25] The classification of the refined Humbert invariant for curves of genus 2
    Kir, Harun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025,
  • [26] Quantization of spectral curves for meromorphic Higgs bundles through topological recursion
    Dumitrescu, Olivia
    Mulase, Motohico
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 179 - 229
  • [27] Quantum algebraic approach to refined topological vertex
    Awata, H.
    Feigin, B.
    Shiraishi, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [28] Quantum algebraic approach to refined topological vertex
    H. Awata
    B. Feigin
    J. Shiraishi
    Journal of High Energy Physics, 2012
  • [29] From Quantum Curves to Topological String Partition Functions II
    Coman, Ioana
    Longhi, Pietro
    Teschner, Joerg
    ANNALES HENRI POINCARE, 2025,
  • [30] Topological recursion, topological quantum field theory and Gromov-Witten invariants of BG
    Serrano, Daniel Hernandez
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1443 - 1468