MRAN: Multimodal relationship-aware attention network for fake news detection

被引:8
|
作者
Yang, Hongyu [1 ,2 ]
Zhang, Jinjiao [2 ]
Zhang, Liang [3 ]
Cheng, Xiang [4 ,5 ]
Hu, Ze [1 ]
机构
[1] Civil Aviat Univ China, Sch Safety Sci & Engn, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Sch Comp Sci & Technol, Tianjin 300300, Peoples R China
[3] Univ Arizona, Sch Informat, Tucson, AZ 85721 USA
[4] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Peoples R China
[5] Civil Aviat Univ China, Informat Secur Evaluat Ctr Civil Aviat, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Fake news detection; Multimodal information; Multimodal feature fusion; Hierarchical semantic feature;
D O I
10.1016/j.csi.2023.103822
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Existing multimodal fake news detection methods face challenges in jointly capturing the intramodality and cross-modal correlation relationships between image regions and text fragments. Additionally, these methods lack comprehensive hierarchical semantics mining for text. These limitations result in ineffective utilization of multimodal information and impact detection performance. To address these issues, we propose a multimodal relationship-aware attention network (MRAN), which consists of three main steps. First, a multi-level encoding network is employed to extract hierarchical semantic feature representations of text, while the visual feature extractor VGG19 learns image feature representations. Second, the captured text and image representations are input into the relationship-aware attention network, which generates high-order fusion features by calculating the similarity between information segments within modalities and cross-modal similarity. Finally, the fusion features are passed through a fake news detector, which identifies fake news. Experimental results on three benchmark datasets demonstrate the effectiveness of MRAN, highlighting its strong detection performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] An emotion-driven, transformer-based network for multimodal fake news detection
    Yadav, Ashima
    Gupta, Anika
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (01)
  • [42] Leveraging Diversity-Aware Context Attention Networks for Fake News Detection on Social Platforms
    Chen, Zhikai
    Wu, Peng
    Pan, Li
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [43] Ecarnet: enhanced clue-ambiguity reasoning network for multimodal fake news detection
    Zhong, Shannan
    Peng, Shujuan
    Liu, Xin
    Zhu, Lei
    Xu, Xing
    Li, Taihao
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [44] LLM-Enhanced multimodal detection of fake news
    Wang, Jingwei
    Zhu, Ziyue
    Liu, Chunxiao
    Li, Rong
    Wu, Xin
    PLOS ONE, 2024, 19 (10):
  • [45] Multimodal Multi-image Fake News Detection
    Giachanou, Anastasia
    Zhang, Guobiao
    Rosso, Paolo
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 647 - 654
  • [46] Dataset for multimodal fake news detection and verification tasks
    Bondielli, Alessandro
    Dell'Oglio, Pietro
    Lenci, Alessandro
    Marcelloni, Francesco
    Passaro, Lucia
    DATA IN BRIEF, 2024, 54
  • [47] An emotion-driven, transformer-based network for multimodal fake news detection
    Ashima Yadav
    Anika Gupta
    International Journal of Multimedia Information Retrieval, 2024, 13
  • [48] Ecarnet: enhanced clue-ambiguity reasoning network for multimodal fake news detection
    Shannan Zhong
    ShuJuan Peng
    Xin Liu
    Lei Zhu
    Xing Xu
    Taihao Li
    Multimedia Systems, 2024, 30
  • [49] Multimodal Feature Adaptive Fusion for Fake News Detection
    Wang, Teng
    Zhang, Dawei
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2024, 60 (13) : 102 - 111
  • [50] Multimodal Data Fusion Framework For Fake News Detection
    Athira, A. B.
    Tiwari, Abhishek
    Kumar, S. D. Madhu
    Chacko, Anu Mary
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,