MRAN: Multimodal relationship-aware attention network for fake news detection

被引:8
|
作者
Yang, Hongyu [1 ,2 ]
Zhang, Jinjiao [2 ]
Zhang, Liang [3 ]
Cheng, Xiang [4 ,5 ]
Hu, Ze [1 ]
机构
[1] Civil Aviat Univ China, Sch Safety Sci & Engn, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Sch Comp Sci & Technol, Tianjin 300300, Peoples R China
[3] Univ Arizona, Sch Informat, Tucson, AZ 85721 USA
[4] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Peoples R China
[5] Civil Aviat Univ China, Informat Secur Evaluat Ctr Civil Aviat, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Fake news detection; Multimodal information; Multimodal feature fusion; Hierarchical semantic feature;
D O I
10.1016/j.csi.2023.103822
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Existing multimodal fake news detection methods face challenges in jointly capturing the intramodality and cross-modal correlation relationships between image regions and text fragments. Additionally, these methods lack comprehensive hierarchical semantics mining for text. These limitations result in ineffective utilization of multimodal information and impact detection performance. To address these issues, we propose a multimodal relationship-aware attention network (MRAN), which consists of three main steps. First, a multi-level encoding network is employed to extract hierarchical semantic feature representations of text, while the visual feature extractor VGG19 learns image feature representations. Second, the captured text and image representations are input into the relationship-aware attention network, which generates high-order fusion features by calculating the similarity between information segments within modalities and cross-modal similarity. Finally, the fusion features are passed through a fake news detector, which identifies fake news. Experimental results on three benchmark datasets demonstrate the effectiveness of MRAN, highlighting its strong detection performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Knowledge-aware multimodal pre-training for fake news detection
    Zhang, Litian
    Zhang, Xiaoming
    Zhou, Ziyi
    Zhang, Xi
    Yu, Philip S.
    Li, Chaozhuo
    INFORMATION FUSION, 2025, 114
  • [22] Leveraging Intra and Inter Modality Relationship for Multimodal Fake News Detection
    Singhal, Shivangi
    Pandey, Tanisha
    Mrig, Saksham
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 726 - 734
  • [23] SCATE: Shared Cross Attention Transformer Encoders for Multimodal Fake News Detection
    Sachan, Tanmay
    Pinnaparaju, Nikhil
    Gupta, Manish
    Varma, Vasudeva
    PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2021, 2021, : 399 - 406
  • [24] Multimodal Co-training for Fake News Identification Using Attention-aware Fusion
    Das Bhattacharjee, Sreyasee
    Yuan, Junsong
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 282 - 296
  • [25] Semantic-enhanced multimodal fusion network for fake news detection
    Li, Shuo
    Yao, Tao
    Li, Saifei
    Yan, Lianshan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 12235 - 12251
  • [26] CAF-ODNN: Complementary attention fusion with optimized deep neural network for multimodal fake news detection
    Luvembe, Alex Munyole
    Li, Weimin
    Li, Shaohau
    Liu, Fangfang
    Wu, Xing
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [27] AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection
    Xu, Xiaoman
    Li, Xiangrun
    Wang, Taihang
    Jiang, Ye
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 86 - 100
  • [28] MCAN: multimodal cross-aware network for fake news detection by extracting semantic-physical feature consistency
    Zhang, Yaozeng
    Ma, Jing
    Jia, Yuguang
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [29] Fake News Detection Based on Multimodal Inputs
    Liang, Zhiping
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 4519 - 4534
  • [30] Multimodal Approaches based on Fake News Detection
    Reddy, Bandi Sravani
    Siva Kumar, A.P.
    Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, : 751 - 755