A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations

被引:8
|
作者
Yang, Yin [1 ]
Tohidi, Emran [2 ]
Deng, Guoting [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Kosar Univ Bojnord, Dept Math, POB 9415615458, Bojnord, Iran
基金
中国国家自然科学基金;
关键词
integro-differential equations; Spectral Galerkin methods; Strict convergence analysis; High-order nonlinear Volterra; SPECTRAL COLLOCATION METHOD; INTEGRAL-EQUATIONS; GALERKIN METHODS;
D O I
10.1016/j.cam.2022.114852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discuss about the application of Jacobi spectral and pseudo-spectral Galerkin techniques for solving high-order nonlinear Volterra integro-differential equations. We supply strict error analysis for Jacobi spectral and pseudo-spectral Galerkin meth-ods(JSGM,JPSGM) under reasonable assumptions, which indicate that the approximate solution errors decay exponentially in the sense of L infinity and L2 omega norm. Some numerical experiments are presented to verify the theoretical results. Superior numerical results with respect to some recent methods are provided in tables and figures.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations
    Farshadmoghadam, Farnaz
    Azodi, Haman Deilami
    Yaghouti, Mohammad Reza
    MATHEMATICAL SCIENCES, 2022, 16 (04) : 445 - 458
  • [42] Modified HPM for high-order linear fractional integro-differential equations of Fredholm-Volterra type
    Eshkuvatov, Z. K.
    Khadijah, M. H.
    Taib, B. M.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
  • [43] A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals
    Bhrawy, A. H.
    Tohidi, E.
    Soleymani, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 482 - 497
  • [44] Numerical solution of Volterra integro-differential equations
    Vanani, S. Karimi
    Aminataei, A.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 654 - 662
  • [45] Systems of nonlinear Volterra integro-differential equations
    Rashidinia, Jalil
    Tahmasebi, Ali
    NUMERICAL ALGORITHMS, 2012, 59 (02) : 197 - 212
  • [46] Systems of nonlinear Volterra integro-differential equations
    Jalil Rashidinia
    Ali Tahmasebi
    Numerical Algorithms, 2012, 59 : 197 - 212
  • [47] Solving nonlinear integro-differential equations using numerical method
    Ramdani, Nedjem Eddine
    Pinelas, Sandra
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (01) : 675 - 687
  • [48] Numerical algorithms for solving a type of nonlinear integro-differential equations
    Xie, Shishen
    World Academy of Science, Engineering and Technology, 2010, 65 : 1083 - 1086
  • [49] A new numerical method for fractional order Volterra integro-differential equations
    Rajagopal, N.
    Balaji, S.
    Seethalakshmi, R.
    Balaji, V. S.
    AIN SHAMS ENGINEERING JOURNAL, 2020, 11 (01) : 171 - 177
  • [50] Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method
    Ebadi, G.
    Rahimi-Ardabili, M. Y.
    Shahmorad, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1580 - 1586