A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations

被引:8
|
作者
Yang, Yin [1 ]
Tohidi, Emran [2 ]
Deng, Guoting [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Kosar Univ Bojnord, Dept Math, POB 9415615458, Bojnord, Iran
基金
中国国家自然科学基金;
关键词
integro-differential equations; Spectral Galerkin methods; Strict convergence analysis; High-order nonlinear Volterra; SPECTRAL COLLOCATION METHOD; INTEGRAL-EQUATIONS; GALERKIN METHODS;
D O I
10.1016/j.cam.2022.114852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discuss about the application of Jacobi spectral and pseudo-spectral Galerkin techniques for solving high-order nonlinear Volterra integro-differential equations. We supply strict error analysis for Jacobi spectral and pseudo-spectral Galerkin meth-ods(JSGM,JPSGM) under reasonable assumptions, which indicate that the approximate solution errors decay exponentially in the sense of L infinity and L2 omega norm. Some numerical experiments are presented to verify the theoretical results. Superior numerical results with respect to some recent methods are provided in tables and figures.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method
    Rohaninasab, N.
    Maleknejad, K.
    Ezzati, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 328 : 171 - 188
  • [22] An effective approach for numerical solutions of high-order Fredholm integro-differential equations
    Turkyilmazoglu, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 384 - 398
  • [23] A Novel Numerical Method for Solving Volterra Integro-Differential Equations
    Patade J.
    Bhalekar S.
    International Journal of Applied and Computational Mathematics, 2020, 6 (1)
  • [24] EXPANSION APPROACH FOR SOLVING NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    Rashidinia, J.
    Tahmasebi, A.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 14 - 27
  • [25] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [26] A New Algorithm of Geometric Mean for Solving High-Order Fredholm Integro-differential Equations
    Aruchunan, E.
    Khajohnsaksumeth, N.
    Wiwatanapataphee, B.
    2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, 2016, : 723 - 729
  • [27] An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations
    Farnaz Farshadmoghadam
    Haman Deilami Azodi
    Mohammad Reza Yaghouti
    Mathematical Sciences, 2022, 16 : 445 - 458
  • [28] A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations
    Zaky, Mahmoud A.
    Alharbi, Weam G.
    Alzubaidi, Marwa M.
    Matoog, R. T.
    AIMS MATHEMATICS, 2025, 10 (03): : 7067 - 7085
  • [29] A Chebyshev Polynomial Approach for High-Order Linear Fredholm-Volterra Integro-Differential Equations
    Yuksel, Gamze
    Gulsu, Mustafa
    Sezer, Mehmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (02): : 393 - 401
  • [30] NUMERICAL-METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEIN, A
    SOPKA, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (04) : 826 - 846