A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations

被引:8
|
作者
Yang, Yin [1 ]
Tohidi, Emran [2 ]
Deng, Guoting [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Kosar Univ Bojnord, Dept Math, POB 9415615458, Bojnord, Iran
基金
中国国家自然科学基金;
关键词
integro-differential equations; Spectral Galerkin methods; Strict convergence analysis; High-order nonlinear Volterra; SPECTRAL COLLOCATION METHOD; INTEGRAL-EQUATIONS; GALERKIN METHODS;
D O I
10.1016/j.cam.2022.114852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discuss about the application of Jacobi spectral and pseudo-spectral Galerkin techniques for solving high-order nonlinear Volterra integro-differential equations. We supply strict error analysis for Jacobi spectral and pseudo-spectral Galerkin meth-ods(JSGM,JPSGM) under reasonable assumptions, which indicate that the approximate solution errors decay exponentially in the sense of L infinity and L2 omega norm. Some numerical experiments are presented to verify the theoretical results. Superior numerical results with respect to some recent methods are provided in tables and figures.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条