Electron doping of a double-perovskite flat-band system

被引:6
|
作者
Jin, Lun [1 ]
Varnava, Nicodemos [2 ,3 ]
Ni, Danrui [1 ]
Gui, Xin [1 ]
Xu, Xianghan [1 ]
Xu, Yuanfeng [1 ]
Bernevig, B. Andrei [3 ,4 ,5 ]
Cava, Robert J. [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[4] Prince ton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
基金
欧洲研究理事会;
关键词
cation-ordered double perovskites; electron-doping; flat-band materials; X-ray powder diffraction; magnetism; NEUTRON-DIFFRACTION; SUPERCONDUCTIVITY; INTERMEDIATE; OXIDE;
D O I
10.1073/pnas.2218997120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat -band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 & LE; x & LE; 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Drude weight of an interacting flat-band metal
    Antebi, Ohad
    Mitscherling, Johannes
    Holder, Tobias
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [42] Modification of Cs2AgBiCl6 Double-Perovskite Photocatalytic Activity by Br Doping
    Guo, Kai
    Lin, Pei
    Wu, Di
    Shi, Zhifeng
    Chen, Xu
    Han, Yanbing
    Xu, Tingting
    Tian, Yongtao
    Liu, Shengman
    Li, Xinjian
    INORGANIC CHEMISTRY, 2025, 64 (09) : 4339 - 4344
  • [43] Controlling the nanostructure and thermal properties of double-perovskite rare-earth tantalates by elemental doping
    Kawai, Emi
    Matsudaira, Tsuneaki
    Ogawa, Takafumi
    Kawashima, Naoki
    Fisher, Craig A. J.
    Yokoe, Daisaku
    Kato, Takeharu
    Kitaoka, Satoshi
    SCRIPTA MATERIALIA, 2022, 210
  • [44] Quantum electron transport in finite-size flat-band Kagome lattice systems
    Ishii, H
    Nakayama, T
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1285 - 1286
  • [45] Multiple quantum scar states and emergent slow thermalization in a flat-band system
    Kuno, Yoshihito
    Mizoguchi, Tomonari
    Hatsugai, Yasuhiro
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [46] A new method for the extraction of flat-band voltage and doping concentration in Tri-gate Junctionless Transistors
    Jeon, D. -Y.
    Park, S. J.
    Mouis, M.
    Barraud, S.
    Kim, G. -T.
    Ghibaudo, G.
    SOLID-STATE ELECTRONICS, 2013, 81 : 113 - 118
  • [47] Ionic Order Engineering in Double-Perovskite Cobaltite
    Katayama, Tsukasa
    Chikamatsu, Akira
    Zhang, Yujun
    Yasui, Shintaro
    Wadati, Hiroki
    Hasegawa, Tetsuya
    CHEMISTRY OF MATERIALS, 2021, 33 (14) : 5675 - 5680
  • [48] Halide Double-Perovskite Semiconductors beyond Photovoltaics
    Muscarella, Loreta A.
    Hutter, Eline M.
    ACS ENERGY LETTERS, 2022, 7 (06) : 2128 - 2135
  • [49] DETERMINATION OF FLAT-BAND POTENTIAL IN RUTILE BY ELECTROREFLECTION TECHNIQUE
    KRYKIN, MA
    TIMASHEV, SF
    SOVIET ELECTROCHEMISTRY, 1978, 14 (01): : 70 - 74
  • [50] Author Correction: Catalogue of flat-band stoichiometric materials
    Nicolas Regnault
    Yuanfeng Xu
    Ming-Rui Li
    Da-Shuai Ma
    Milena Jovanovic
    Ali Yazdani
    Stuart S. P. Parkin
    Claudia Felser
    Leslie M. Schoop
    N. Phuan Ong
    Robert J. Cava
    Luis Elcoro
    Zhi-Da Song
    B. Andrei Bernevig
    Nature, 2022, 607 (7920) : E20 - E20