Electron doping of a double-perovskite flat-band system

被引:6
|
作者
Jin, Lun [1 ]
Varnava, Nicodemos [2 ,3 ]
Ni, Danrui [1 ]
Gui, Xin [1 ]
Xu, Xianghan [1 ]
Xu, Yuanfeng [1 ]
Bernevig, B. Andrei [3 ,4 ,5 ]
Cava, Robert J. [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[4] Prince ton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
基金
欧洲研究理事会;
关键词
cation-ordered double perovskites; electron-doping; flat-band materials; X-ray powder diffraction; magnetism; NEUTRON-DIFFRACTION; SUPERCONDUCTIVITY; INTERMEDIATE; OXIDE;
D O I
10.1073/pnas.2218997120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat -band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 & LE; x & LE; 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Flat-band superconductivity in strained Dirac materials
    Kauppila, V. J.
    Aikebaier, F.
    Heikkila, T. T.
    PHYSICAL REVIEW B, 2016, 93 (21)
  • [32] Simple method to construct flat-band lattices
    Morales-Inostroza, Luis
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [33] Flat-band ferromagnetism in armchair graphene nanoribbons
    Lee, Yen-Chen
    Lin, Hsiu-Hau
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [34] Preformed Cooper pairs in flat-band semimetals
    Zyuzin, Alexander A.
    Zyuzin, A. Yu
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [35] Flat-band ferromagnetism in quantum dot superlattices
    Tamura, H
    Shiraishi, K
    Kimura, T
    Takayanagi, H
    PHYSICAL REVIEW B, 2002, 65 (08) : 1 - 8
  • [36] Possible flat-band ferromagnetism in an organic polymer
    Arita, R
    Suwa, Y
    Kuroki, K
    Aoki, H
    POLYHEDRON, 2003, 22 (14-17) : 1883 - 1888
  • [37] Discrete flat-band solitons in the kagome lattice
    Vicencio, Rodrigo A.
    Johansson, Magnus
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [38] Compact discrete breathers on flat-band networks
    Danieli, C.
    Maluckov, A.
    Flach, S.
    LOW TEMPERATURE PHYSICS, 2018, 44 (07) : 678 - 687
  • [39] ELECTRON-TRANSFER REACTIONS AND FLAT-BAND POTENTIALS OF WO3 COLLOIDS
    NENADOVIC, MT
    RAJH, T
    MICIC, OI
    NOZIK, AJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (24): : 5827 - 5830
  • [40] Flat-band ferromagnetism in twisted bilayer graphene
    Pons, R.
    Mielke, A.
    Stauber, T.
    PHYSICAL REVIEW B, 2020, 102 (23)