Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution

被引:0
|
作者
Xu, Qin [1 ,2 ,3 ]
Liu, Shiji [1 ,2 ,3 ]
Liu, Jinpei [4 ]
Luo, Bin [1 ,2 ,3 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[4] Anhui Univ, Sch Business, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image super-resolution; Transformer; Convolutional neural network; Multi-scale feature extraction; Perception;
D O I
10.1007/s12559-023-10210-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hyperspectral image (HSI) super-resolution (SR) without auxiliary high-resolution images is a challenging task in computer vision applications. The existing methods almost resort to the deep convolutional neural networks of fixed geometrical kernel, which can not model the long-range dependencies and does not conform to the human visual cognition. To address this issue, we propose the cognitively-inspired multi-scale spectral-spatial transformer for HSI SR. To solve the problem of high storage and computation burden, the overlapped band grouping strategy is adopted in light of high similarity between neighboring spectral bands of HSI. Considering the different textures and details that appear in HSIs, inspired by the human cognitive mechanism, the multi-scale spatial and spectral transformer blocks are developed which can efficiently and effectively learn the spatial and spectral feature representation at different scales and long-range dependencies of features. Finally, to fuse the feature information of neighboring groups, the 2D convolution mixed with 3D separable convolution is designed, which fully explores the complementarity and continuity of spatial and spectral information. Extensive experiments conducted on three benchmark datasets demonstrate that the proposed method yields state-of-the-art results at different scales. The effectiveness of the proposed method is verified through spatial and spectral dimension data visualization and ablation experiments. The code and models are publicly available at https://github.com/liushiji666/MMSSTN. The experimental results prove the effectiveness of our proposed method, which largely overcomes the disadvantage that convolution is ineffective for long-range dependence modeling. The method performs long-range dependence modeling on both spatial and spectral features and efficiently mines complementary information between bands, thereby enhancing the model's high perceptual ability.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [31] Multi-scale Dictionary for Single Image Super-resolution
    Zhang, Kaibing
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1114 - 1121
  • [32] Multi-scale Residual Network for Image Super-Resolution
    Li, Juncheng
    Fang, Faming
    Mei, Kangfu
    Zhang, Guixu
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 527 - 542
  • [33] Lightweight Image Super-Resolution by Multi-Scale Aggregation
    Wan, Jin
    Yin, Hui
    Liu, Zhihao
    Chong, Aixin
    Liu, Yanting
    IEEE TRANSACTIONS ON BROADCASTING, 2021, 67 (02) : 372 - 382
  • [34] Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation
    Hu, Jing
    Zhao, Minghua
    Li, Yunsong
    REMOTE SENSING, 2019, 11 (10)
  • [35] Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation Fusion
    Yi, Chen
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07): : 4165 - 4177
  • [36] Unsupervised multi-level spatio-spectral fusion transformer for hyperspectral image super-resolution
    Cao, Xuheng
    Lian, Yusheng
    Li, Jin
    Wang, Kaixuan
    Ma, Chao
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [37] Attention-guided video super-resolution with recurrent multi-scale spatial–temporal transformer
    Wei Sun
    Xianguang Kong
    Yanning Zhang
    Complex & Intelligent Systems, 2023, 9 : 3989 - 4002
  • [38] MS3A-Net: multi-scale and spectral-spatial attention network for hyperspectral image classification
    Dai, Mengyun
    Sun, Qi
    Dai, Luanyan
    Lin, Yaohai
    Wei, Lifang
    Yang, Changcai
    Chen, Riqing
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (19-24) : 7139 - 7160
  • [39] Super-resolution Reconstruction of Remote Sensing Image Based on Transformer of Multi-scale Feature Fusion
    Wang, Zhi
    Wang, Kun
    Wang, Meng-Qing
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (08): : 1178 - 1184
  • [40] ESSAformer: Efficient Transformer for Hyperspectral Image Super-resolution
    Zhang, Mingjin
    Zhang, Chi
    Zhang, Qiming
    Guo, Jie
    Gao, Xinbo
    Zhang, Jing
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 23016 - 23027