Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution

被引:0
|
作者
Xu, Qin [1 ,2 ,3 ]
Liu, Shiji [1 ,2 ,3 ]
Liu, Jinpei [4 ]
Luo, Bin [1 ,2 ,3 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[4] Anhui Univ, Sch Business, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image super-resolution; Transformer; Convolutional neural network; Multi-scale feature extraction; Perception;
D O I
10.1007/s12559-023-10210-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hyperspectral image (HSI) super-resolution (SR) without auxiliary high-resolution images is a challenging task in computer vision applications. The existing methods almost resort to the deep convolutional neural networks of fixed geometrical kernel, which can not model the long-range dependencies and does not conform to the human visual cognition. To address this issue, we propose the cognitively-inspired multi-scale spectral-spatial transformer for HSI SR. To solve the problem of high storage and computation burden, the overlapped band grouping strategy is adopted in light of high similarity between neighboring spectral bands of HSI. Considering the different textures and details that appear in HSIs, inspired by the human cognitive mechanism, the multi-scale spatial and spectral transformer blocks are developed which can efficiently and effectively learn the spatial and spectral feature representation at different scales and long-range dependencies of features. Finally, to fuse the feature information of neighboring groups, the 2D convolution mixed with 3D separable convolution is designed, which fully explores the complementarity and continuity of spatial and spectral information. Extensive experiments conducted on three benchmark datasets demonstrate that the proposed method yields state-of-the-art results at different scales. The effectiveness of the proposed method is verified through spatial and spectral dimension data visualization and ablation experiments. The code and models are publicly available at https://github.com/liushiji666/MMSSTN. The experimental results prove the effectiveness of our proposed method, which largely overcomes the disadvantage that convolution is ineffective for long-range dependence modeling. The method performs long-range dependence modeling on both spatial and spectral features and efficiently mines complementary information between bands, thereby enhancing the model's high perceptual ability.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [21] A Hybrid Multi-scale Spatial Filtering and Minimum Spanning Forest for Spectral-Spatial Hyperspectral Image Classification
    Poorahangaryan, F.
    Ghassemian, H.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (03) : 345 - 353
  • [22] A Multi-Scale and Multi-Level Spectral-Spatial Feature Fusion Network for Hyperspectral Image Classification
    Mu, Caihong
    Guo, Zhen
    Liu, Yi
    REMOTE SENSING, 2020, 12 (01)
  • [23] A Multi-Scale Wavelet 3D-CNN for Hyperspectral Image Super-Resolution
    Yang, Jingxiang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Xiao, Liang
    REMOTE SENSING, 2019, 11 (13)
  • [24] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [25] Algorithm for Spectral-Spatial Remote Sensing Image Super-Resolution: Multi-Sensor Case
    Belov, A. M.
    Denisova, A. Y.
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [26] Efficient evolutionary multi-scale spectral-spatial attention fusion network for hyperspectral image classification
    Zhang, Mengxuan
    Lei, Zhikun
    Liu, Long
    Ma, Kun
    Shang, Ronghua
    Jiao, Licheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [27] Multi-Scale Video Super-Resolution Transformer With Polynomial Approximation
    Zhang, Fan
    Chen, Gongguan
    Wang, Hua
    Li, Jinjiang
    Zhang, Caiming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4496 - 4506
  • [28] Lightweight Single Image Super-Resolution With Multi-Scale Spatial Attention Networks
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE ACCESS, 2020, 8 : 35383 - 35391
  • [29] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [30] Multi-scale Super-resolution Reconstruction of a Single Image
    Liu, Jing
    Xue, Yuxin
    He, Shuai
    Zhang, Xiaoyan
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878