Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution

被引:0
|
作者
Xu, Qin [1 ,2 ,3 ]
Liu, Shiji [1 ,2 ,3 ]
Liu, Jinpei [4 ]
Luo, Bin [1 ,2 ,3 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Peoples R China
[3] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[4] Anhui Univ, Sch Business, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image super-resolution; Transformer; Convolutional neural network; Multi-scale feature extraction; Perception;
D O I
10.1007/s12559-023-10210-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hyperspectral image (HSI) super-resolution (SR) without auxiliary high-resolution images is a challenging task in computer vision applications. The existing methods almost resort to the deep convolutional neural networks of fixed geometrical kernel, which can not model the long-range dependencies and does not conform to the human visual cognition. To address this issue, we propose the cognitively-inspired multi-scale spectral-spatial transformer for HSI SR. To solve the problem of high storage and computation burden, the overlapped band grouping strategy is adopted in light of high similarity between neighboring spectral bands of HSI. Considering the different textures and details that appear in HSIs, inspired by the human cognitive mechanism, the multi-scale spatial and spectral transformer blocks are developed which can efficiently and effectively learn the spatial and spectral feature representation at different scales and long-range dependencies of features. Finally, to fuse the feature information of neighboring groups, the 2D convolution mixed with 3D separable convolution is designed, which fully explores the complementarity and continuity of spatial and spectral information. Extensive experiments conducted on three benchmark datasets demonstrate that the proposed method yields state-of-the-art results at different scales. The effectiveness of the proposed method is verified through spatial and spectral dimension data visualization and ablation experiments. The code and models are publicly available at https://github.com/liushiji666/MMSSTN. The experimental results prove the effectiveness of our proposed method, which largely overcomes the disadvantage that convolution is ineffective for long-range dependence modeling. The method performs long-range dependence modeling on both spatial and spectral features and efficiently mines complementary information between bands, thereby enhancing the model's high perceptual ability.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [1] Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution
    Qin Xu
    Shiji Liu
    Jinpei Liu
    Bin Luo
    Cognitive Computation, 2024, 16 (1) : 377 - 391
  • [2] Hyperspectral image super-resolution with spectral-spatial network
    Jia, Jinrang
    Ji, Luyan
    Zhao, Yongchao
    Geng, Xiurui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7806 - 7829
  • [3] Spectral-Spatial MLP Network for Hyperspectral Image Super-Resolution
    Yao, Yunze
    Hu, Jianwen
    Liu, Yaoting
    Zhao, Yushan
    REMOTE SENSING, 2023, 15 (12)
  • [4] Multi-level and Multi-scale Spatial and Spectral Fusion CNN for Hyperspectral Image Super-resolution
    Han, Xian-Hua
    Zheng, YinQiang
    Chen, Yen-Wei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4330 - 4339
  • [5] Group Shuffle and Spectral-Spatial Fusion for Hyperspectral Image Super-Resolution
    Wang, Xinya
    Cheng, Yingsong
    Mei, Xiaoguang
    Jiang, Junjun
    Ma, Jiayi
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1223 - 1236
  • [6] Multi-scale spectral-spatial dual-transformer network for hyperspectral image classification
    Pan, Zhaojie
    Ding, Sunjinyan
    Sun, Genyun
    Zhang, Aizhu
    Jia, Xiuping
    Fu, Hang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (07) : 2480 - 2494
  • [7] A spectral and spatial transformer for hyperspectral remote sensing image super-resolution
    Wang, Bingqian
    Chen, Jianhua
    Wang, Huajun
    Tang, Yipeng
    Chen, Jiongling
    Jiang, Ye
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [8] A novel spatial and spectral transformer network for hyperspectral image super-resolution
    Wu, Huapeng
    Xu, Hui
    Zhan, Tianming
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [9] Multi-Scale Residual Spectral-Spatial Attention Combined with Improved Transformer for Hyperspectral Image Classification
    Wang, Aili
    Zhang, Kang
    Wu, Haibin
    Iwahori, Yuji
    Chen, Haisong
    ELECTRONICS, 2024, 13 (06)
  • [10] SSAformer: Spatial-Spectral Aggregation Transformer for Hyperspectral Image Super-Resolution
    Wang, Haoqian
    Zhang, Qi
    Peng, Tao
    Xu, Zhongjie
    Cheng, Xiangai
    Xing, Zhongyang
    Li, Teng
    REMOTE SENSING, 2024, 16 (10)