Bi-directional Contrastive Distillation for Multi-behavior Recommendation

被引:0
|
作者
Chu, Yabo [1 ]
Yang, Enneng [1 ]
Liu, Qiang [2 ]
Liu, Yuting [1 ]
Jiang, Linying [1 ]
Guo, Guibing [1 ]
机构
[1] Northeastern Univ, Software Coll, Shenyang, Liaoning, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Ctr Res Intelligent Percept & Comp CRIPAC, Natl Lab Pattern Recognit NLPR, Beijing, Peoples R China
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I | 2023年 / 13713卷
基金
中国国家自然科学基金;
关键词
Recommender system; Contrastive distillation; Multi-behavior recommender;
D O I
10.1007/978-3-031-26387-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-behavior recommendation leverages auxiliary behaviors (e.g., view, add-to-cart) to improve the prediction for target behaviors (e.g., buy). Most existing works are built upon the assumption that all the auxiliary behaviors are positively correlated with target behaviors. However, we empirically find that such an assumption may not hold in real-world datasets. In fact, some auxiliary feedback is too noisy to be helpful, and it is necessary to restrict its influence for better performance. To this end, in this paper we propose a Bi-directional Contrastive Distillation (BCD) model for multi-behavior recommendation, aiming to distill valuable knowledge (about user preference) from the interplay of multiple user behaviors. Specifically, we design a forward distillation to distill the knowledge from auxiliary behaviors to help model target behaviors, and then a backward distillation to distill the knowledge from target behaviors to enhance the modelling of auxiliary behaviors. Through this circular learning, we can better extract the common knowledge from multiple user behaviors, where noisy auxiliary behaviors will not be involved. The experimental results on two real-world datasets show that our approach outperforms other counterparts in accuracy.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 50 条
  • [21] Multi-Behavior Job Recommendation with Dynamic Availability
    Saito, Yosuke
    Sugiyani, Kazunari
    ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL IN THE ASIA PACIFIC REGION, SIGIR-AP 2023, 2023, : 264 - 271
  • [22] Hierarchical Projection Enhanced Multi-behavior Recommendation
    Meng, Chang
    Zhang, Hengyu
    Guo, Wei
    Guo, Huifeng
    Liu, Haotian
    Zhang, Yingxue
    Zheng, Hongkun
    Tang, Ruiming
    Li, Xiu
    Zhang, Rui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4649 - 4660
  • [23] Multi-behavior recommendation based on intent learning
    Xinglin Pan
    Mingxin Gan
    Multimedia Systems, 2023, 29 : 3655 - 3668
  • [24] Graph Meta Network for Multi-Behavior Recommendation
    Xia, Lianghao
    Xu, Yong
    Huang, Chao
    Dai, Peng
    Bo, Liefeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 757 - 766
  • [25] Multi-behavior Recommendation with Graph Convolutional Networks
    Jin, Bowen
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 659 - 668
  • [26] Multi-behavior recommendation based on intent learning
    Pan, Xinglin
    Gan, Mingxin
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3655 - 3668
  • [27] A Bi-directional Evolution Algorithm for Financial Recommendation Model
    Xue, Jingming
    Huang, Lu
    Liu, Qiang
    Yin, Jianping
    THEORETICAL COMPUTER SCIENCE, NCTCS 2017, 2017, 768 : 341 - 354
  • [28] Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation
    Lee, Geon
    Eom, Chanho
    Lee, Wonkyung
    Park, Hyekang
    Ham, Bumsub
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 38 - 55
  • [29] Behavior Pattern Mining-based Multi-Behavior Recommendation
    Li, Haojie
    Cheng, Zhiyong
    Yu, Xu
    Liu, Jinhuan
    Liu, Guanfeng
    Du, Junwei
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2291 - 2295
  • [30] Explicit Behavior Interaction with Heterogeneous Graph for Multi-behavior Recommendation
    Zhang, Zhongping
    Jia, Yin
    Hou, Yuehan
    Yu, Xinlu
    DATA SCIENCE AND ENGINEERING, 2024, 9 (02) : 133 - 151