Multi-Behavior Job Recommendation with Dynamic Availability

被引:0
|
作者
Saito, Yosuke [1 ]
Sugiyani, Kazunari [2 ]
机构
[1] Kyoto Univ, Kyoto, Japan
[2] Osake Seikei Univ, Osaka, Japan
来源
ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL IN THE ASIA PACIFIC REGION, SIGIR-AP 2023 | 2023年
关键词
Job Recommendation; Multi-Behavior Recommendation; Dynamic Availability; PREDICTION;
D O I
10.1145/3624918.3625314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, we can see a lot of job postings on the Internet, providing us with more diverse job opportunities. As a result, it is getting more and more difficult for job seekers to find job postings relevant to their preferences. Consequently, job recommendations play an important role to reduce the burden of job searching. Generally, job postings have a publication period, for example, 30 days. Then they have been expired since the positions were occupied. As a result, job seekers may be frustrated when they experience such situations as they cannot apply for the positions. This indicates that job seekers may have strong preferences for job postings even if their application behaviors cannot be observed. This kind of gap has not been investigated in the line of Multi-Behavior Recommendation. Therefore, in this work, we propose a new job recommendation model, called Multi-Behavior Job Recommendation with Dynamic Availability (MBJ-DA), which takes into account: (1) auxiliary behaviors other than an application behavior and (2) the influence of dynamic availability of job postings. MBJ-DA enables a more accurate estimation of each user's actual preferences by explicitly distinguishing the noise potentially inherent in auxiliary behaviors. Furthermore, by explicitly considering the influence of the dynamic availability of job postings, MBJ-DA can mitigate biases resulting from the influence and estimate each user's actual preferences more accurately. Experimental results on our dataset constructed from an actual job search website show that MBJ-DA outperforms several state-of-the-arts in terms of MRR and nDCG.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 50 条
  • [1] Dynamic Multi-Behavior Sequence Modeling for Next Item Recommendation
    Cho, Junsu
    Hyun, Dongmin
    Lim, Dong won
    Cheon, Hyeon jae
    Park, Hyoung-iel
    Yu, Hwanjo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4199 - 4207
  • [2] Hypergraph temporal multi-behavior recommendation
    Choi, Jooweon
    Kwon, Junehyoung
    Kim, Yeonghwa
    Kim, Youngbin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [3] Multi-Feature Behavior Relationship for Multi-Behavior Recommendation
    Mu, Xiaodong
    Zeng, Zhaoju
    Shen, Danyao
    Zhang, Bo
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [4] Multi-view multi-behavior interest learning network and contrastive learning for multi-behavior recommendation
    Su, Jieyang
    Chen, Yuzhong
    Lin, Xiuqiang
    Zhong, Jiayuan
    Dong, Chen
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [5] Contrastive Clustering Learning for Multi-Behavior Recommendation
    Lan, Wei
    Zhou, Guoxian
    Chen, Qingfeng
    Wang, Wenguang
    Pan, Shirui
    Pan, Yi
    Zhang, Shichao
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2025, 43 (01)
  • [6] Hierarchical Projection Enhanced Multi-behavior Recommendation
    Meng, Chang
    Zhang, Hengyu
    Guo, Wei
    Guo, Huifeng
    Liu, Haotian
    Zhang, Yingxue
    Zheng, Hongkun
    Tang, Ruiming
    Li, Xiu
    Zhang, Rui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4649 - 4660
  • [7] Multi-behavior recommendation based on intent learning
    Xinglin Pan
    Mingxin Gan
    Multimedia Systems, 2023, 29 : 3655 - 3668
  • [8] Graph Meta Network for Multi-Behavior Recommendation
    Xia, Lianghao
    Xu, Yong
    Huang, Chao
    Dai, Peng
    Bo, Liefeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 757 - 766
  • [9] Multi-behavior Recommendation with Graph Convolutional Networks
    Jin, Bowen
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 659 - 668
  • [10] Multi-behavior recommendation based on intent learning
    Pan, Xinglin
    Gan, Mingxin
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3655 - 3668