Magnetic guidewire steering at ultrahigh magnetic fields

被引:26
|
作者
Tiryaki, Mehmet Efe [1 ,2 ]
Elmacioglu, Yigit Gunsur [1 ]
Sitti, Metin [1 ,2 ,3 ,4 ]
机构
[1] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[2] ETH, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
[4] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkiye
关键词
CATHETER; SOFT; MANIPULATION; NAVIGATION; ACTUATION; TRACKING;
D O I
10.1126/sciadv.adg6438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With remote magnetic steering capabilities, magnetically actuated guidewires have proven their potential in minimally invasive medical procedures. Existing magnetic steering strategies, however, have been limited to low magnetic fields, which prevents the integration into medical systems operating at ultrahigh fields (UHF), such as magnetic resonance imaging (MRI) scanners. Here, we present magnetic guidewire design and steering strategies by elucidating the magnetic actuation principles of permanent magnets at UHF. By modeling the uniaxial magnetization behavior of permanent magnets, we outline the magnetic torque and force and demonstrate unique magnetic actuation opportunities at UHF, such as in situ remagnetization. Last, we illustrate the proposed steering principles using a magnetic guidewire composed of neodymium magnets and a fiber optic rod in a 7-Tesla preclinical MRI scanner. The developed UHF magnetic actuation framework would enable nextgeneration magnetic robots to operate inside MRI scanners.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The study of magnetic active guidewire and magnetic field control
    Jeon G.H.
    In-Chul B.
    Kim S.H.
    J. Inst. Control Rob. Syst., 4 (340-345): : 340 - 345
  • [22] Phase boundary of θ phase of solid oxygen in ultrahigh magnetic fields
    Nomura, T.
    Matsuda, Y. H.
    Takeyama, S.
    Matsuo, A.
    Kindo, K.
    Kobayashi, T. C.
    PHYSICAL REVIEW B, 2015, 92 (06)
  • [23] Ultrahigh energy heavy nuclei propagation in extragalactic magnetic fields
    Bertone, G
    Isola, C
    Lemoine, M
    Sigl, G
    PHYSICAL REVIEW D, 2002, 66 (10):
  • [24] Experimental quantum chemistry at ultrahigh magnetic fields: Some opportunities
    Solem, JC
    Sheppard, MG
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1997, 64 (05) : 619 - 628
  • [25] Physical properties of liquid oxygen under ultrahigh magnetic fields
    Nomura, T.
    Ikeda, A.
    Gen, M.
    Matsuo, A.
    Kindo, K.
    Kohama, Y.
    Matsuda, Y. H.
    Zherlitsyn, S.
    Wosnitza, J.
    Tsuda, H.
    Kobayashi, T. C.
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [26] High-temperature superconductors in high and ultrahigh magnetic fields
    Vedeneev, S. I.
    PHYSICS-USPEKHI, 2012, 55 (06) : 625 - 632
  • [27] Propagation of ultrahigh energy protons in regular extragalactic magnetic fields
    Stanev, T
    Seckel, D
    Engel, R
    PHYSICAL REVIEW D, 2003, 68 (10)
  • [28] Development and Verification of Mechanism for Enhancement of Steering Angle and Active Locomotion for Magnetic Micro Active-Guidewire
    Jeon, Guk-Hong
    Kim, Sung Hoon
    IEEE ACCESS, 2020, 8 : 31103 - 31113
  • [29] Patterned Magnetic Fields for Remote Steering and Wireless Powering to a Swimming Microrobot
    Hajiaghajani, Amirhossein
    Kim, Dongwook
    Abdolali, Ali
    Ahn, Seungyoung
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (01) : 207 - 216
  • [30] EFFECTS OF CONSTANT AND ULTRAHIGH FREQUENCY MAGNETIC FIELDS UPON PHYSICAL PROPERTIES OF NON-MAGNETIC MATERIALS
    Makara, V. A.
    Steblenko, L. P.
    Kuryliuk, A. N.
    Shevchenko, V. B.
    Kolchenko, Yu. L.
    Naumenko, S. N.
    Nizhelskaya, A. I.
    Kravchenko, V. N.
    PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2007, : 78 - 80