Using the Monte-Carlo method to analyze experimental data and produce uncertainties and covariances

被引:0
|
作者
Henning, Greg [1 ]
Kerveno, Maelle [1 ]
Dessagne, Philippe [1 ]
Claeys, Francois [1 ,2 ]
Bako, Nicolas Dari [1 ]
Dupuis, Marc [3 ]
Hilaire, Stephane [3 ]
Romain, Pascal [3 ]
Saint Jean, Cyrille De
Capote, Roberto [4 ]
Boromiza, Marian [5 ]
Olacel, Adina [5 ]
Negret, Alexandru [5 ]
Borcea, Catalin [5 ]
Plompen, Arjan [6 ]
Dobarro, Carlos Paradela [6 ]
Nyman, Markus [6 ]
Drohe, Jean-Claude [6 ]
Wynants, Ruud [6 ]
机构
[1] Univ Strasbourg, CNRS, IPHC DRS UMR 7178, 23 Rue Loess, F-67037 Strasbourg, France
[2] CEA, DES, IRESNE, DER SPRC LEPh, F-13108 St Paul Les Durance, France
[3] CEA, DAM, DIF, F-91297 Arpajon, France
[4] Nucl Data Sect, Int Atom Energy Agcy, Wagramer Str, A-1400 Vienna, Austria
[5] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[6] Joint Res Ctr, European Commiss, Retieseweg 111, B-2440 Geel, Belgium
关键词
D O I
10.1051/epjconf/202328401045
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The production of useful and high-quality nuclear data requires measurements with high precision and extensive information on uncertainties and possible correlations. Analytical treatment of uncertainty propagation can become very tedious when dealing with a high number of parameters. Even worse, the production of a covariance matrix, usually needed in the evaluation process, will require lenghty and error-prone formulas. To work around these issues, we propose using random sampling techniques in the data analysis to obtain final values, uncertainties and covariances and for analyzing the sensitivity of the results to key parameters. We demonstrate this by one full analysis, one partial analysis and an analysis of the sensitivity to branching ratios in the case of (n,n'gamma) cross section measurements.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] FITS OF MONTE-CARLO DISTRIBUTIONS TO DATA
    EBERHARD, P
    LYNCH, G
    LAMBERT, D
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 326 (03): : 574 - 580
  • [42] PHENOMENOLOGICAL RENORMALIZATION OF MONTE-CARLO DATA
    BARBER, MN
    SELKE, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11): : L617 - L623
  • [43] ON A NEW VARIANT OF THE MONTE-CARLO METHOD
    BOROVKOV, KA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1991, 36 (02) : 355 - 360
  • [44] MONTE-CARLO METHOD FOR LANDAU EQUATION
    VOLKOV, IA
    DOKLADY AKADEMII NAUK SSSR, 1987, 296 (02): : 323 - 326
  • [45] A MONTE-CARLO METHOD FOR POISSON EQUATION
    DELAURENTIS, JM
    ROMERO, LA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (01) : 123 - 140
  • [46] A MONTE-CARLO METHOD FOR CRITICALITY PROBLEMS
    GOAD, W
    JOHNSTON, R
    NUCLEAR SCIENCE AND ENGINEERING, 1959, 5 (06) : 371 - 375
  • [47] MONTE-CARLO METHOD AND BERTRAND PARADOX
    GUTER, RS
    MURATOVA, TA
    INDUSTRIAL LABORATORY, 1970, 36 (05): : 741 - &
  • [48] SOME APPLICATIONS OF THE MONTE-CARLO METHOD
    MURRAY, FJ
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF AMERICA, 1953, 1 (02): : 75 - 75
  • [49] Monte-Carlo method in AFM calibration
    Gonzalez-Jorge, H.
    Valencia, J. L.
    Alvarez, V.
    Rodriguez, F.
    Yebra, F. J.
    PROCEEDINGS OF THE 2009 SPANISH CONFERENCE ON ELECTRON DEVICES, 2009, : 432 - 435
  • [50] Monte-Carlo method in digital holography
    Papp, Z
    Kornis, J
    Gombkoto, B
    SPECKLE METROLOGY 2003, PROCEEDINGS, 2003, 4933 : 39 - 41