Using the Monte-Carlo method to analyze experimental data and produce uncertainties and covariances

被引:0
|
作者
Henning, Greg [1 ]
Kerveno, Maelle [1 ]
Dessagne, Philippe [1 ]
Claeys, Francois [1 ,2 ]
Bako, Nicolas Dari [1 ]
Dupuis, Marc [3 ]
Hilaire, Stephane [3 ]
Romain, Pascal [3 ]
Saint Jean, Cyrille De
Capote, Roberto [4 ]
Boromiza, Marian [5 ]
Olacel, Adina [5 ]
Negret, Alexandru [5 ]
Borcea, Catalin [5 ]
Plompen, Arjan [6 ]
Dobarro, Carlos Paradela [6 ]
Nyman, Markus [6 ]
Drohe, Jean-Claude [6 ]
Wynants, Ruud [6 ]
机构
[1] Univ Strasbourg, CNRS, IPHC DRS UMR 7178, 23 Rue Loess, F-67037 Strasbourg, France
[2] CEA, DES, IRESNE, DER SPRC LEPh, F-13108 St Paul Les Durance, France
[3] CEA, DAM, DIF, F-91297 Arpajon, France
[4] Nucl Data Sect, Int Atom Energy Agcy, Wagramer Str, A-1400 Vienna, Austria
[5] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[6] Joint Res Ctr, European Commiss, Retieseweg 111, B-2440 Geel, Belgium
关键词
D O I
10.1051/epjconf/202328401045
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The production of useful and high-quality nuclear data requires measurements with high precision and extensive information on uncertainties and possible correlations. Analytical treatment of uncertainty propagation can become very tedious when dealing with a high number of parameters. Even worse, the production of a covariance matrix, usually needed in the evaluation process, will require lenghty and error-prone formulas. To work around these issues, we propose using random sampling techniques in the data analysis to obtain final values, uncertainties and covariances and for analyzing the sensitivity of the results to key parameters. We demonstrate this by one full analysis, one partial analysis and an analysis of the sensitivity to branching ratios in the case of (n,n'gamma) cross section measurements.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] INEQUALITY TO MONTE-CARLO METHOD
    FETISOV, VN
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (01): : 224 - 226
  • [22] PROJECTOR MONTE-CARLO METHOD
    BLANKENBECLER, R
    SUGAR, RL
    PHYSICAL REVIEW D, 1983, 27 (06): : 1304 - 1311
  • [23] THE MAGIC OF THE MONTE-CARLO METHOD
    MILLIKAN, RC
    BYTE, 1983, 8 (02): : 371 - 373
  • [24] A new hybrid method - combined heat flux method with Monte-Carlo method to analyze thermal radiation
    Zhao, ZW
    Cang, DQ
    Wu, WF
    Li, YK
    Li, BW
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2006, 13 (01): : 25 - 28
  • [25] MONTE-CARLO EIGENFUNCTION UNCERTAINTIES - (LWBR DEVELOPMENT PROGRAM)
    GAST, RC
    CANDELOR.NR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1971, 14 (01): : 219 - &
  • [26] TROPICAL CYCLONE WINDS - UNCERTAINTIES IN MONTE-CARLO SIMULATION
    DORMAN, CML
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1983, 12 (03) : 281 - 296
  • [27] BIFURCATING DISTRIBUTIVE SYSTEM USING MONTE-CARLO METHOD
    WANG, CY
    BASSINGTHWAIGHTE, JB
    WEISSMAN, LJ
    MATHEMATICAL AND COMPUTER MODELLING, 1992, 16 (03) : 91 - 98
  • [28] USING A MONTE-CARLO METHOD FOR OPTIMIZING SMOOTHED FUNCTIONALS
    RUBINSTEIN, Y
    OPERATIONS RESEARCH, 1977, 25 (04) : 720 - 724
  • [29] Improving Cloud Simulation Using the Monte-Carlo Method
    Bertot, Luke
    Genaud, Stephane
    Gossa, Julien
    EURO-PAR 2018: PARALLEL PROCESSING, 2018, 11014 : 404 - 416
  • [30] SIMULATION OF CHEMICAL SYSTEMS USING MONTE-CARLO METHOD
    HANUSSE, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1973, 277 (02): : 93 - 96