Highly Stable and Enhanced Performance of p-i-n Perovskite Solar Cells via Cuprous Oxide Hole-Transport Layers

被引:11
|
作者
Chuang, Tung-Han [1 ]
Chen, Yin-Hung [1 ]
Sakalley, Shikha [2 ,3 ,4 ]
Cheng, Wei-Chun [2 ]
Chan, Choon Kit [5 ]
Chen, Chih-Ping [3 ,4 ]
Chen, Sheng-Chi [3 ,4 ,6 ,7 ]
机构
[1] Natl Taiwan Univ, Inst Mat Sci & Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan
[3] Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 243, Taiwan
[4] Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City 243, Taiwan
[5] INTI Int Univ, Fac Engn & Quant Surveying, Mech Engn Dept, Negeri Sembilan 71800, Malaysia
[6] Chang Gung Univ, Coll Engn, Ctr Green Technol, Taoyuan 333, Taiwan
[7] Chang Gung Univ, Ctr Green Technol, Taoyuan 333, Taiwan
关键词
Cu2O films; solar cell; DCMS; HiPIMS; superimposed HiPIMS; hole-transport layer (HTL); power conversion efficiency (PCE); OPTOELECTRONIC PROPERTIES; LOW-TEMPERATURE; THIN-FILMS; NIO FILMS; TIN OXIDE; EFFICIENT; CU2O;
D O I
10.3390/nano13081363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (f(O2)) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm(-2)) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Conjugated Small Molecule for Efficient Hole Transport in High-Performance p-i-n Type Perovskite Solar Cells
    Yang, Liyan
    Cai, Feilong
    Yan, Yu
    Li, Jinghai
    Liu, Dan
    Pearson, Andrew J.
    Wang, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (31)
  • [32] Development of Superior Nickel Oxide Layer for Boosted Hole-Transport Performance in Perovskite Solar Cells
    Li, Jinyu
    Liu, Rui
    Gou, Yunsheng
    Xu, Maoxia
    Ren, Haorong
    Luo, Wenjie
    Cai, Xudong
    Tang, Shuihua
    Li, Zhenyu
    Yu, Hua
    ENERGY TECHNOLOGY, 2024, 12 (07)
  • [33] Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells
    Guohua Wu
    Yaohong Zhang
    Ryuji Kaneko
    Yoshiyuki Kojima
    Ashraful Islam
    Kosuke Sugawa
    Joe Otsuki
    Shengzhong Liu
    Journal of Energy Chemistry, 2020, 48 (09) : 293 - 298
  • [34] Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Hole-Transport Materials
    Liu, Xicheng
    Zhu, Lifeng
    Zhang, Fei
    You, Jing
    Xiao, Yin
    Li, Dongmei
    Wang, Shirong
    Meng, Qingbo
    Li, Xianggao
    ENERGY TECHNOLOGY, 2017, 5 (02) : 312 - 320
  • [35] A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells
    Jeong, Inyoung
    Jo, Jea Woong
    Bae, Seunghwan
    Son, Hae Jung
    Ko, Min Jae
    DYES AND PIGMENTS, 2019, 164 : 1 - 6
  • [36] Co-evaporated p-i-n perovskite solar cells with sputtered NiOx hole transport layer
    Erdenebileg, E.
    Tiwari, N.
    Kosasih, F. U.
    Dewi, H. A.
    Jia, L.
    Mathews, N.
    Mhaisalkar, S.
    Bruno, A.
    MATERIALS TODAY CHEMISTRY, 2023, 30
  • [37] Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers
    Momblona, Cristina
    Gil-Escrig, Lidon
    Bandiello, Enrico
    Hutter, Eline M.
    Sessolo, Michele
    Lederer, Kay
    Blochwitz-Nimoth, Jan
    Bolink, Henk J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) : 3456 - 3463
  • [38] Synergistic Ionic Liquid in Hole Transport Layers for Highly Stable and Efficient Perovskite Solar Cells
    Cao, Fengxian
    Zhu, Ziyao
    Zhang, Chunhong
    Chen, Pengxu
    Wang, Shibo
    Tong, Anling
    He, Ruowei
    Wang, Ying
    Sun, Weihai
    Li, Yunlong
    Wu, Jihuai
    SMALL, 2023, 19 (27)
  • [39] Additive-associated antisolvent engineering of perovskite films for highly stable and efficient p-i-n perovskite solar cells
    Su, Rui
    Yang, Xudong
    Ji, Wenxi
    Zhang, Taoyi
    Zhang, Longgui
    Wang, Ailian
    Jiang, Zhixuan
    Chen, Qiaoyun
    Zhou, Yi
    Song, Bo
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (48) : 18303 - 18311
  • [40] Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p-i-n Perovskite Solar Cells
    Xu, Guiying
    Xue, Rongming
    Stuard, Samuel J.
    Ade, Harald
    Zhang, Chenjie
    Yao, Jianlin
    Li, Yaowen
    Li, Yongfang
    ADVANCED MATERIALS, 2021, 33 (13)