Highly Stable and Enhanced Performance of p-i-n Perovskite Solar Cells via Cuprous Oxide Hole-Transport Layers

被引:11
|
作者
Chuang, Tung-Han [1 ]
Chen, Yin-Hung [1 ]
Sakalley, Shikha [2 ,3 ,4 ]
Cheng, Wei-Chun [2 ]
Chan, Choon Kit [5 ]
Chen, Chih-Ping [3 ,4 ]
Chen, Sheng-Chi [3 ,4 ,6 ,7 ]
机构
[1] Natl Taiwan Univ, Inst Mat Sci & Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan
[3] Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 243, Taiwan
[4] Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City 243, Taiwan
[5] INTI Int Univ, Fac Engn & Quant Surveying, Mech Engn Dept, Negeri Sembilan 71800, Malaysia
[6] Chang Gung Univ, Coll Engn, Ctr Green Technol, Taoyuan 333, Taiwan
[7] Chang Gung Univ, Ctr Green Technol, Taoyuan 333, Taiwan
关键词
Cu2O films; solar cell; DCMS; HiPIMS; superimposed HiPIMS; hole-transport layer (HTL); power conversion efficiency (PCE); OPTOELECTRONIC PROPERTIES; LOW-TEMPERATURE; THIN-FILMS; NIO FILMS; TIN OXIDE; EFFICIENT; CU2O;
D O I
10.3390/nano13081363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (f(O2)) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm(-2)) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hole transport materials for scalable p-i-n perovskite solar modules
    Li, Sibo
    Wang, Xin
    Huang, Nuanshan
    He, Sisi
    Qiu, Longbin
    Qi, Yabing
    ENERGYCHEM, 2024, 6 (05)
  • [22] Evaporated Self-Assembled Monolayer Hole Transport Layers: Lossless Interfaces in p-i-n Perovskite Solar Cells
    Farag, Ahmed
    Feeney, Thomas
    Hossain, Ihteaz M.
    Schackmar, Fabian
    Fassl, Paul
    Kuester, Kathrin
    Baeuerle, Rainer
    Ruiz-Preciado, Marco A.
    Hentschel, Mario
    Ritzer, David B.
    Diercks, Alexander
    Li, Yang
    Nejand, Bahram Abdollahi
    Laufer, Felix
    Singh, Roja
    Starke, Ulrich
    Paetzold, Ulrich W.
    ADVANCED ENERGY MATERIALS, 2023, 13 (08)
  • [23] Enhancing Efficiency of Inverted Perovskite Solar Cells by Sputtered Nickel Oxide Hole-Transport Layers
    Kim, Jae Won
    Cho, Eunmi
    Lee, Hyun-Jung
    Kwon, Sung-Nam
    Park, Jin-Seong
    Kim, Mac
    Kim, Do-Hyung
    Na, Seok-In
    Lee, Sang-Jin
    SOLAR RRL, 2024, 8 (04)
  • [24] Conjugated copolymers as doping- and annealing-free hole transport materials for highly stable and efficient p-i-n perovskite solar cells
    Ma, Hui
    Yuan, Ligang
    Chen, Qiaoyun
    Fu, Jianfei
    Zhang, Jiajia
    Jiang, Zhixuan
    Dong, Bin
    Zhou, Yi
    Yin, Shouchun
    Song, Bo
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (04) : 2269 - 2275
  • [25] A polymeric bis(di-p-anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells
    Tremblay, Marie-Helene
    Schutt, Kelly
    Zhang, Yadong
    Barlow, Stephen
    Snaith, Henry J.
    Marder, Seth R.
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (33) : 15017 - 15021
  • [26] Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer
    Ross, Marcel
    Gil-Escrig, Lidon
    Al-Ashouri, Amran
    Tockhorn, Philipp
    Jost, Marko
    Rech, Bernd
    Albrecht, Steve
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (35) : 39261 - 39272
  • [27] Dibenzothiophene S, S-Dioxide-Containing Dipolar Molecules As Efficient Hole-Transport Materials for p-i-n Perovskite Solar Cells
    Zhou, Junjie
    Chen, Lei
    Ma, Zijun
    Liao, Xiwei
    Yan, Yujing
    Chen, Ziyin
    Yang, Yuhang
    Wang, Rui
    Yu, Wei
    Wang, Yichen
    Nie, Xiaoting
    Huo, Pengyun
    Fang, Xiang
    Zhang, Jing
    Zhou, Yi
    Song, Bo
    Yuan, Ningyi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (42) : 57851 - 57859
  • [28] Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p-i-n Perovskite Solar Cells
    Aydin, Erkan
    Troughton, Joel
    De Bastiani, Michele
    Ugur, Esma
    Sajjad, Muhammad
    Alzahrani, Areej
    Neophytou, Marios
    Schwingenschlogl, Udo
    Laquai, Frederic
    Baran, Derya
    De Wolf, Stefaan
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6227 - 6233
  • [29] Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p-i-n Solar Cells
    Boldyreva, Aleksandra
    Zhidkov, Ivan
    Tsarev, Sergey
    Akbulatov, Azat
    Tepliakova, Marina M.
    Fedotov, Yury S.
    Bredikhin, Sergey, I
    Postnova, Evgeniya Yu
    Kurmaev, Ernst Zagidovich
    Stevenson, Keith J.
    Troshin, Pavel A.
    Luchkin, Sergey Yu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 19161 - 19173
  • [30] Synergistic Passivation on Buried Interface for Highly Efficient and Stable p-i-n Perovskite Solar Cells
    Wang, Kai
    Yu, Bo
    Lin, Changqing
    Yao, Ruohe
    Yu, Huangzhong
    Wang, Hong
    SMALL, 2024, 20 (42)