Highly Stable and Enhanced Performance of p-i-n Perovskite Solar Cells via Cuprous Oxide Hole-Transport Layers

被引:11
|
作者
Chuang, Tung-Han [1 ]
Chen, Yin-Hung [1 ]
Sakalley, Shikha [2 ,3 ,4 ]
Cheng, Wei-Chun [2 ]
Chan, Choon Kit [5 ]
Chen, Chih-Ping [3 ,4 ]
Chen, Sheng-Chi [3 ,4 ,6 ,7 ]
机构
[1] Natl Taiwan Univ, Inst Mat Sci & Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan
[3] Ming Chi Univ Technol, Dept Mat Engn, New Taipei City 243, Taiwan
[4] Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City 243, Taiwan
[5] INTI Int Univ, Fac Engn & Quant Surveying, Mech Engn Dept, Negeri Sembilan 71800, Malaysia
[6] Chang Gung Univ, Coll Engn, Ctr Green Technol, Taoyuan 333, Taiwan
[7] Chang Gung Univ, Ctr Green Technol, Taoyuan 333, Taiwan
关键词
Cu2O films; solar cell; DCMS; HiPIMS; superimposed HiPIMS; hole-transport layer (HTL); power conversion efficiency (PCE); OPTOELECTRONIC PROPERTIES; LOW-TEMPERATURE; THIN-FILMS; NIO FILMS; TIN OXIDE; EFFICIENT; CU2O;
D O I
10.3390/nano13081363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (f(O2)) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm(-2)) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CuS nanosheets as additives in the hole transport layers for stable p-i-n perovskite solar cells
    Chen, Qiaoyun
    Asgarimoghaddam, Hatameh
    Ji, Wenxi
    Wu, Wenting
    Cao, Ji
    Wang, Rui
    Yu, Wei
    Nie, Xiaoting
    Zhou, Yi
    Song, Bo
    Musselman, Kevin P.
    NANO ENERGY, 2025, 135
  • [2] Elucidating the Roles of Hole Transport Layers in p-i-n Perovskite Solar Cells
    Ali, Jazib
    Gao, Peng
    Zhou, Guanqing
    Li, Yu
    Hao, Tianyu
    Song, Jingnan
    Xu, Jinqiu
    Qian, Kun
    Zhang, Quanzeng
    Zhu, Lei
    Zhang, Ming
    Wang, Jing
    Feng, Wei
    Hu, Hailin
    Liu, Feng
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (12):
  • [3] Intrinsic Organic Semiconductors as Hole Transport Layers in p-i-n Perovskite Solar Cells
    Susic, Isidora
    Zanoni, Kassio P. S.
    Paliwal, Abhyuday
    Kaya, Ismail C.
    Hawash, Zafer
    Sessolo, Michele
    Moons, Ellen
    Bolink, Henk J.
    SOLAR RRL, 2022, 6 (04)
  • [4] Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells
    Nejand, Bahram Abdollahi
    Ahmadi, Vahid
    Gharibzadeh, Saba
    Shahverdi, Hamid Reza
    CHEMSUSCHEM, 2016, 9 (03) : 302 - 313
  • [5] Benchmarking the Stability of Hole-Transport Materials for p-i-n Perovskite Solar Cells: The Importance of Interfacial Reactions
    Novikov, Artyom N.
    Emelianov, Nikita A.
    Zhidkov, Ivan S.
    Kraevaya, Olga A.
    Fedotov, Yuriy S.
    Yamilova, Olga R.
    Bredikhin, Sergey I.
    Kurmaev, Ernst Z.
    Dremova, Nadezhda N.
    Korchagin, Denis V.
    Shilov, Gennady V.
    Frolova, Lyubov A.
    Aldoshin, Sergey M.
    Troshin, Pavel A.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7395 - 7404
  • [6] Enhanced efficiency and stability of p-i-n perovskite solar cells using PMMA doped PTAA as hole transport layers
    Wang, Zijun
    Fan, Pu
    Zhang, Dayong
    Yang, Genjie
    Yu, Junsheng
    SYNTHETIC METALS, 2020, 265
  • [7] Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells
    Liu, Zonghao
    Zhu, Aili
    Cai, Fensha
    Tao, LeiMing
    Zhou, Yinhua
    Zhao, Zhixin
    Chen, Qi
    Cheng, Yi-Bing
    Zhou, Huanping
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (14) : 6597 - 6605
  • [8] Impact of hole-transport layer materials on the field-induced degradation of p-i-n perovskite solar cells
    Ozerova, Victoria V.
    Emelianov, Nikita A.
    Frolova, Lyubov A.
    Fedotov, Yuri S.
    Bredikhin, Sergey I.
    Aldoshin, Sergey M.
    Troshin, Pavel A.
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (05): : 997 - 1003
  • [9] Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells
    Huang, Peng
    Wang, Zhaowei
    Liu, Yanfeng
    Zhang, Kaicheng
    Yuan, Ligang
    Zhou, Yi
    Song, Bo
    Li, Yongfang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) : 25323 - 25331
  • [10] Impact of hole-transport layer materials on the field-induced degradation of p-i-n perovskite solar cells
    Ozerova, Victoria V.
    Emelianov, Nikita A.
    Frolova, Lyubov A.
    Fedotov, Yuri S.
    Bredikhin, Sergey I.
    Aldoshin, Sergey M.
    Troshin, Pavel A.
    Sustainable Energy and Fuels, 2024, 8 (05): : 997 - 1003