Double smoothing local linear estimation in nonlinear time series

被引:2
|
作者
Prasangika, K. D. [1 ]
Tang, Wan [2 ]
Yao, Zeng [3 ]
Zuo, Guoxin [3 ]
机构
[1] Univ Ruhuna, Dept Math, Matara, Sri Lanka
[2] Tulane Univ, Dept Biostat & Data Sci, New Orleans, LA 70118 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non parametric regression; local linear regression; double smoothing local linear regression; time series; asymptotic properties;
D O I
10.1080/03610926.2021.1927096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the double smoothing local linear regression method to nonparametric regression of time series. Under a strong mixing condition for the dependence of the time series, we show that after another round of smoothing based on the local linear regression estimates, the double smoothing local linear estimate will have reduced asymptotic bias, while keeping the variance at the same asymptotic order. The asymptotic bias reduces from the order of h(2) for the local linear estimates to h(4) for the double smoothing local linear estimates, where h is the bandwidth. Hence the double smoothing local linear method produces more optimal estimates in terms of mean squared error. Simulation studies and real time series data analysis confirm the advantages of the double smoothing method compared to the local linear method.
引用
收藏
页码:1385 / 1399
页数:15
相关论文
共 50 条
  • [41] Change point estimation by local linear smoothing under a weak dependence condition
    Prieur C.
    Mathematical Methods of Statistics, 2007, 16 (1) : 25 - 41
  • [42] LOCAL POLYNOMIAL DOUBLE-SMOOTHING ESTIMATION OF A CONDITIONAL DISTRIBUTION FUNCTION WITH DEPENDENT
    Mimi Hong
    Xianzhu Xiong
    Annals of Applied Mathematics, 2017, 33 (04) : 364 - 378
  • [43] Asymptotic normality of the local linear estimation of the conditional density for functional time-series data
    Xiong, Xianzhu
    Zhou, Peiqin
    Ailian, Chen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (14) : 3418 - 3440
  • [44] Gravitational smoothing of time series
    Gvishiani, A. D.
    Agayan, S. M.
    Bogoutdinov, Sh. R.
    Kagan, A. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02): : 62 - 70
  • [45] Fuzzy-time-series network used to forecast linear and nonlinear time series
    Eren Bas
    Erol Egrioglu
    Cagdas Hakan Aladag
    Ufuk Yolcu
    Applied Intelligence, 2015, 43 : 343 - 355
  • [46] Fuzzy-time-series network used to forecast linear and nonlinear time series
    Bas, Eren
    Egrioglu, Erol
    Aladag, Cagdas Hakan
    Yolcu, Ufuk
    APPLIED INTELLIGENCE, 2015, 43 (02) : 343 - 355
  • [47] NONLINEAR AND LINEAR FORECASTING OF THE EEG TIME-SERIES
    BLINOWSKA, KJ
    MALINOWSKI, M
    BIOLOGICAL CYBERNETICS, 1991, 66 (02) : 159 - 165
  • [48] General expression for linear and nonlinear time series models
    Huang, Ren
    Xu, Feiyun
    Chen, Ruwen
    FRONTIERS OF MECHANICAL ENGINEERING, 2009, 4 (01) : 15 - 24
  • [49] Parameter estimation of linear and nonlinear systems based on orthogonal series
    Alejo, David
    Isidro, Lazaro
    Jesus, Rico
    Alvarez, Alberto
    INTERNATIONAL MEETING OF ELECTRICAL ENGINEERING RESEARCH 2012, 2012, 35 : 67 - 76
  • [50] Local linear regression for estimating time series data
    Nottingham, QJ
    Cook, DF
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 37 (02) : 209 - 217