Double smoothing local linear estimation in nonlinear time series

被引:2
|
作者
Prasangika, K. D. [1 ]
Tang, Wan [2 ]
Yao, Zeng [3 ]
Zuo, Guoxin [3 ]
机构
[1] Univ Ruhuna, Dept Math, Matara, Sri Lanka
[2] Tulane Univ, Dept Biostat & Data Sci, New Orleans, LA 70118 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non parametric regression; local linear regression; double smoothing local linear regression; time series; asymptotic properties;
D O I
10.1080/03610926.2021.1927096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the double smoothing local linear regression method to nonparametric regression of time series. Under a strong mixing condition for the dependence of the time series, we show that after another round of smoothing based on the local linear regression estimates, the double smoothing local linear estimate will have reduced asymptotic bias, while keeping the variance at the same asymptotic order. The asymptotic bias reduces from the order of h(2) for the local linear estimates to h(4) for the double smoothing local linear estimates, where h is the bandwidth. Hence the double smoothing local linear method produces more optimal estimates in terms of mean squared error. Simulation studies and real time series data analysis confirm the advantages of the double smoothing method compared to the local linear method.
引用
收藏
页码:1385 / 1399
页数:15
相关论文
共 50 条
  • [21] Local linear regression estimation for time series with long-range dependence
    Masry, E
    Mielniczuk, J
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 82 (02) : 173 - 193
  • [22] Volatility of linear and nonlinear time series
    Kalisky, T
    Ashkenazy, Y
    Havlin, S
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [23] Semiparametric regression smoothing of non-linear time series
    Gao, JT
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 521 - 539
  • [24] Statistical inference in the partial linear models with the double smoothing local linear regression method
    He, Hua
    Tang, Wan
    Zuo, Guoxin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 146 : 102 - 112
  • [25] The Smoothing of Time Series
    Crathorne, A. R.
    JOURNAL OF POLITICAL ECONOMY, 1932, 40 (03) : 427 - 428
  • [26] Identification of the structure of linear and non-linear time series models, using nonparametric local linear kernel estimation
    Kirchner, RM
    Souza, RC
    Ziegelmann, FA
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 589 - 596
  • [27] Linear and nonlinear dynamics in time series - Introduction
    Dagum, EB
    Proietti, T
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2004, 8 (02):
  • [28] Local filtering of noisy nonlinear time series
    Walker, DM
    PHYSICS LETTERS A, 1998, 249 (03) : 209 - 217
  • [29] Non-parametric smoothing and prediction for nonlinear circular time series
    Di Marzio, Macro
    Panzera, Agnese
    Taylor, Charles C.
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (04) : 620 - 630
  • [30] Noise smoothing for nonlinear time series using wavelet soft threshold
    Han, Min
    Liu, Yuhua
    Xi, Jianhui
    Guo, Wei
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (01) : 62 - 65