Double smoothing local linear estimation in nonlinear time series

被引:2
|
作者
Prasangika, K. D. [1 ]
Tang, Wan [2 ]
Yao, Zeng [3 ]
Zuo, Guoxin [3 ]
机构
[1] Univ Ruhuna, Dept Math, Matara, Sri Lanka
[2] Tulane Univ, Dept Biostat & Data Sci, New Orleans, LA 70118 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non parametric regression; local linear regression; double smoothing local linear regression; time series; asymptotic properties;
D O I
10.1080/03610926.2021.1927096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the double smoothing local linear regression method to nonparametric regression of time series. Under a strong mixing condition for the dependence of the time series, we show that after another round of smoothing based on the local linear regression estimates, the double smoothing local linear estimate will have reduced asymptotic bias, while keeping the variance at the same asymptotic order. The asymptotic bias reduces from the order of h(2) for the local linear estimates to h(4) for the double smoothing local linear estimates, where h is the bandwidth. Hence the double smoothing local linear method produces more optimal estimates in terms of mean squared error. Simulation studies and real time series data analysis confirm the advantages of the double smoothing method compared to the local linear method.
引用
收藏
页码:1385 / 1399
页数:15
相关论文
共 50 条
  • [1] Nonparametric estimation of additive nonlinear ARX time series: Local linear fitting and projections
    Cai, ZW
    Masry, E
    ECONOMETRIC THEORY, 2000, 16 (04) : 465 - 501
  • [2] LOCAL LINEAR QUANTILE ESTIMATION FOR NONSTATIONARY TIME SERIES
    Zhou, Zhou
    Wu, Wei Biao
    ANNALS OF STATISTICS, 2009, 37 (5B): : 2696 - 2729
  • [3] A smoothing algorithm for nonlinear time series
    Billings, SA
    Lee, KL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (03): : 1037 - 1051
  • [4] Double Smoothing in Time Series Formalization
    Rytikov, G. O.
    Ulianov, M. V.
    Petrushin, V. N.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGIES IN PHYSICAL AND ENGINEERING APPLICATIONS (ICCTPEA), 2014, : 150 - 151
  • [5] Change point estimation by local linear smoothing
    Grégoire, G
    Hamrouni, Z
    JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 83 (01) : 56 - 83
  • [6] Smoothing time series with local polynomial regression on time
    Ledolter, Johannes
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (06) : 959 - 971
  • [7] Monte Carlo smoothing for nonlinear time series
    Godsill, SJ
    Doucet, A
    West, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) : 156 - 168
  • [8] Bootstrap of kernel smoothing in nonlinear time series
    Franke, J
    Kreiss, JP
    Mammen, E
    BERNOULLI, 2002, 8 (01) : 1 - 37
  • [9] Nonparametric smoothing and quantile estimation in time series
    Abberger, K
    Feng, YH
    Heiler, S
    RISK MANAGEMENT, ECONOMETRICS AND NEURAL NETWORKS, 1998, : 1 - 16
  • [10] Optimal design for curve estimation by local linear smoothing
    Cheng, MY
    Hall, P
    Titterington, DM
    BERNOULLI, 1998, 4 (01) : 3 - 14