Fe3C/Fe Decorated N-doped Carbon Derived from Tetrabutylammonium tetrachloroferrate Complex as Bifunctional Electrocatalysts for ORR, OER and Zn-Air Batteries in Alkaline Medium

被引:0
|
作者
Ghosh, Debojit [1 ]
Banerjee, Rumeli [1 ]
Bhaduri, Samanka Narayan [1 ]
Chatterjee, Rupak [2 ]
Ghosh, Abhisek Brata [3 ]
Das, Samarpita [1 ]
Pramanick, Indrani [1 ]
Bhaumik, Asim [2 ]
Biswas, Papu [1 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, W Bengal, India
[2] Indian Assoc Cultivat Sci, Sch Mat Sci, Kolkata 700032, W Bengal, India
[3] Univ Calcutta, Dept Polymer Sci & Technol, 92 APC Rd, Kolkata 700009, India
关键词
Iron-based catalyst; Bifunctional catalyst; Oxygen evolution reaction; Oxygen reduction reaction; Zinc-air batteries; IRON CARBIDE NANOPARTICLES; EFFICIENT OXYGEN REDUCTION; NITROGEN; CATALYSTS; HYBRIDS;
D O I
10.1002/asia.202300933
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 degrees C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (Delta E=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm(-2) with a long lifespan, demonstrating prodigious possibilities for practical application.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Fe3O4-Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn-air batteries
    Li, Longbin
    Li, Yizhe
    Xiao, Yingbo
    Zeng, Rong
    Tang, Xiannong
    Yang, Weizu
    Huang, Jun
    Yuan, Kai
    Chen, Yiwang
    CHEMICAL COMMUNICATIONS, 2019, 55 (52) : 7538 - 7541
  • [42] Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe3C(Fe) Hybrid Nanostructure to Enhance O2 Reduction Catalysis of Zn-Air Batteries
    Yang, Jie
    Hu, Jiangtao
    Weng, Mouyi
    Tan, Rui
    Tian, Leilei
    Yang, Jinlong
    Amine, Joseph
    Zheng, Jiaxin
    Chen, Haibiao
    Pan, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4587 - 4596
  • [43] A hybridization cage-confinement pyrolysis strategy for ultrasmall Ni3Fe alloy coated with N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for Zn-air batteries
    Yan, Qi
    Duan, Xinde
    Liu, Yang
    Ge, Fayuan
    Zheng, Hegen
    Journal of Materials Chemistry A, 2022, 11 (03) : 1430 - 1438
  • [44] A hybridization cage-confinement pyrolysis strategy for ultrasmall Ni3Fe alloy coated with N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for Zn-air batteries
    Yan, Qi
    Duan, Xinde
    Liu, Yang
    Ge, Fayuan
    Zheng, Hegen
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (03) : 1430 - 1438
  • [45] Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries
    Chen, Ding
    Zhu, Jiawei
    Mu, Xueqin
    Cheng, Ruilin
    Li, Wenqiang
    Liu, Suli
    Pu, Zonghua
    Lin, Can
    Mu, Shichun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 268
  • [46] Isolated transition metal nanoparticles anchored on N-doped carbon nanotubes as scalable bifunctional electrocatalysts for efficient Zn-air batteries
    Zhang, Baohua
    Wu, Meiying
    Zhang, Liang
    Xu, Yun
    Hou, Weidong
    Guo, Huazhang
    Wang, Liang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 629 : 640 - 648
  • [47] Bifunctional oxygen electrocatalysts with WN@Ni nanostructures implanted on N-doped carbon nanorods for rechargeable Zn-Air batteries
    Du, Yue
    Chen, Wenxue
    Zhong, Zhiyi
    Wang, Shizhu
    Zhou, Lina
    Xiong, Dongbin
    Liu, Yisi
    Liu, Zhenhui
    Wang, Kai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [48] Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries
    Wang, Qichen
    Lei, Yongpeng
    Chen, Zhiyan
    Wu, Nan
    Wang, Yaobing
    Wang, Bing
    Wang, Yingde
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (02) : 516 - 526
  • [49] Formation of hollow frameworks of dual-sided Fe/Fe3C@N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries
    Xie, Wen Wen
    Tian, Tong Zhen
    Yang, Min
    Li, Nian Wu
    Yu, Le
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 317
  • [50] Formation of hollow frameworks of dual-sided Fe/Fe3C@N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries
    Xie, Wen Wen
    Tian, Tong Zhen
    Yang, Min
    Li, Nian Wu
    Yu, Le
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 317