Fe3C/Fe Decorated N-doped Carbon Derived from Tetrabutylammonium tetrachloroferrate Complex as Bifunctional Electrocatalysts for ORR, OER and Zn-Air Batteries in Alkaline Medium

被引:0
|
作者
Ghosh, Debojit [1 ]
Banerjee, Rumeli [1 ]
Bhaduri, Samanka Narayan [1 ]
Chatterjee, Rupak [2 ]
Ghosh, Abhisek Brata [3 ]
Das, Samarpita [1 ]
Pramanick, Indrani [1 ]
Bhaumik, Asim [2 ]
Biswas, Papu [1 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, W Bengal, India
[2] Indian Assoc Cultivat Sci, Sch Mat Sci, Kolkata 700032, W Bengal, India
[3] Univ Calcutta, Dept Polymer Sci & Technol, 92 APC Rd, Kolkata 700009, India
关键词
Iron-based catalyst; Bifunctional catalyst; Oxygen evolution reaction; Oxygen reduction reaction; Zinc-air batteries; IRON CARBIDE NANOPARTICLES; EFFICIENT OXYGEN REDUCTION; NITROGEN; CATALYSTS; HYBRIDS;
D O I
10.1002/asia.202300933
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 degrees C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (Delta E=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm(-2) with a long lifespan, demonstrating prodigious possibilities for practical application.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Rational design of N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen reduction catalysts for Zn-air batteries
    Cao, Lei
    Li, Zhen-huan
    Gu, Yu
    Li, Dao-hao
    Su, Kun-mei
    Yang, Dong-jiang
    Cheng, Bo-wen
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11340 - 11347
  • [22] CoNi Nanoparticles Supported on N-Doped Bifunctional Hollow Carbon Composites as High-Performance ORR/OER Catalysts for Rechargeable Zn-Air Batteries
    Sheng, Kuang
    Yi, Qingfeng
    Chen, A-Ling
    Wang, Yuebing
    Yan, Yuhui
    Nie, Huidong
    Zhou, Xiulin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (38) : 45394 - 45405
  • [23] Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER
    Li, Ji-Sen
    Li, Shun-Li
    Tang, Yu-Jia
    Han, Min
    Dai, Zhi-Hui
    Bao, Jian-Chun
    Lan, Ya-Qian
    CHEMICAL COMMUNICATIONS, 2015, 51 (13) : 2710 - 2713
  • [24] FeN x /ZnSe/Fe Heterojunctions Embedded in Leafy N-Doped Carbon as Efficient Bifunctional Oxygen Electrocatalysts for Flexible Rechargeable Zn-Air Batteries
    Peng, Lijuan
    Zhong, Jiahuan
    Zhang, Chengkai
    Zhang, Yaohao
    Yuan, Dingsheng
    ENERGY & FUELS, 2024, 38 (13) : 12172 - 12181
  • [25] Integration of CoFe Alloys and Fe/Fe3C Nanoparticles into N-Doped Carbon Nanosheets as Dual Catalytic Active Sites To Promote the Oxygen Electrocatalysis of Zn-Air Batteries
    Peng, Zhuo
    Wang, Haitao
    Xia, Xianchao
    Zhang, Xinxin
    Dong, Zehua
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (24) : 9009 - 9016
  • [26] Interface engineering of Fe3C/Fe encapsulated in nitrogen doped carbon as oxygen electrocatalysts for flexible solid state Zn-air batteries in a wide temperature range
    Ma, Yuanwei
    Zhao, Lancheng
    Zhang, Weidong
    Zhou, Xia
    Cong, Xuzi
    Wang, Jigang
    Liu, Qiang
    Li, Zhongfang
    Wang, Likai
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [27] FeNi alloy anchored on waste cotton derived N-doped carbon nanosheets as efficient bifunctional electrocatalysts for rechargeable Zn-air batteries
    Sun, Jiale
    Huang, Xia
    Xu, Chenxi
    Yao, Yong
    Wu, Jiexing
    Wang, Shuai
    He, Yongkang
    Zhou, Haihui
    Li, Huanxin
    Kuang, Yafei
    Huang, Zhongyuan
    APPLIED SURFACE SCIENCE, 2024, 674
  • [28] Protruding N-doped carbon nanotubes on elongated hexagonal Co-N-C nanoplates as bifunctional oxygen electrocatalysts for Zn-air batteries
    Ma, Fei-Xiang
    Xiong, Yu-Xuan
    Fan, Hong-Shuang
    Liu, Zheng-Qi
    Du, Yue
    Zhang, Meng-Tian
    Zhen, Liang
    Xu, Cheng-Yan
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (05) : 946 - 954
  • [29] Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries
    Lai, Changgan
    Liu, Xianbin
    Cao, Changqing
    Wang, Ying
    Yin, Yanhong
    Liang, Tongxiang
    Dionysiou, Dionysios D.
    CARBON, 2021, 173 : 715 - 723
  • [30] Exploiting encapsulated FeCo alloy decorated N-doped hierarchically porous carbon electrocatalysts in rechargeable Zn-air batteries
    Gao, Jingxia
    Wang, Luyuan
    Zhu, Ping
    Zhao, Xinsheng
    Wang, Guoxiang
    Liu, Sa
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870