Research on Printmaking Image Classification and Creation Based on Convolutional Neural Network

被引:0
|
作者
Pan, Kai [1 ]
Chi, Hongyan [2 ]
机构
[1] Baise Univ, Coll Art & Design, Baise 533000, Peoples R China
[2] Hunan First Normal Univ, Cheng Nan Acad, Changsha 410000, Peoples R China
关键词
Convolutional neural network; print classification; activation function; feature fusion; OPTIMIZATION; ALGORITHM;
D O I
10.1142/S0219467825500196
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
As an important form of expression in modern civilization art, printmaking has a rich variety of types and a prominent sense of artistic hierarchy. Therefore, printmaking is highly favored around the world due to its unique artistic characteristics. Classifying print types through image feature elements will improve people's understanding of print creation. Convolutional neural networks (CNNs) have good application effects in the field of image classification, so CNN is used for printmaking analysis. Considering that the classification effect of the traditional convolutional neural image classification model is easily affected by the activation function, the T-ReLU activation function is introduced. By utilizing adjustable parameters to enhance the soft saturation characteristics of the model and avoid gradient vanishing, a T-ReLU convolutional model is constructed. A better convolutional image classification model is proposed based on the T-ReLU convolutional model, taking into account the issue of subpar multi-level feature fusion in deep convolutional image classification models. Utilize normalization to analyze visual input, an eleven-layer convolutional network with residual units in the convolutional layer, and cascading thinking to fuse convolutional network defects. The performance test results showed that in the data test of different styles of artificial prints, the GT-ReLU model can obtain the best image classification accuracy, and the image classification accuracy rate is 0.978. The GT-ReLU model maintains a classification accuracy above 94.4% in the multi-dataset test classification performance test, which is higher than that of other image classification models. For the use of visual processing technology in the field of classifying prints, the research content provides good reference value.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Shallow convolutional neural network for image classification
    Fangyuan Lei
    Xun Liu
    Qingyun Dai
    Bingo Wing-Kuen Ling
    SN Applied Sciences, 2020, 2
  • [32] Tongue Image Texture Classification Based on Image Inpainting and Convolutional Neural Network
    Yan J.
    Chen B.
    Guo R.
    Zeng M.
    Yan H.
    Xu Z.
    Wang Y.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [33] Simple Convolutional Neural Network on Image Classification
    Guo, Tianmei
    Dong, Jiwen
    Li, Henjian
    Gao, Yunxing
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 721 - 724
  • [34] Quantum convolutional neural network for image classification
    Chen, Guoming
    Chen, Qiang
    Long, Shun
    Zhu, Weiheng
    Yuan, Zeduo
    Wu, Yilin
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 655 - 667
  • [35] Shallow convolutional neural network for image classification
    Lei, Fangyuan
    Liu, Xun
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    SN APPLIED SCIENCES, 2020, 2 (01):
  • [36] The Algorithm Research of Image Classification Based on Deep Convolutional Network
    Wu DaQin
    Hu Haiyan
    2018 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2018, : 231 - 233
  • [37] Food Image Classification with Convolutional Neural Network
    Islam, Md Tohidul
    Siddique, B. M. Nafiz Karim
    Rahman, Sagidur
    Jabid, Taskeed
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 257 - +
  • [38] Medical Image Classification with Convolutional Neural Network
    Li, Qing
    Cai, Weidong
    Wang, Xiaogang
    Zhou, Yun
    Feng, David Dagan
    Chen, Mei
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 844 - 848
  • [39] Quantum convolutional neural network for image classification
    Guoming Chen
    Qiang Chen
    Shun Long
    Weiheng Zhu
    Zeduo Yuan
    Yilin Wu
    Pattern Analysis and Applications, 2023, 26 : 655 - 667
  • [40] Application of Ensemble Network Architecture Based on Convolutional Neural Network in Image Classification
    Yu, Zhuocheng
    Zhang, Zhiqiang
    Li, Kehan
    Wang, Le
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 452 - 455