Research on Printmaking Image Classification and Creation Based on Convolutional Neural Network

被引:0
|
作者
Pan, Kai [1 ]
Chi, Hongyan [2 ]
机构
[1] Baise Univ, Coll Art & Design, Baise 533000, Peoples R China
[2] Hunan First Normal Univ, Cheng Nan Acad, Changsha 410000, Peoples R China
关键词
Convolutional neural network; print classification; activation function; feature fusion; OPTIMIZATION; ALGORITHM;
D O I
10.1142/S0219467825500196
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
As an important form of expression in modern civilization art, printmaking has a rich variety of types and a prominent sense of artistic hierarchy. Therefore, printmaking is highly favored around the world due to its unique artistic characteristics. Classifying print types through image feature elements will improve people's understanding of print creation. Convolutional neural networks (CNNs) have good application effects in the field of image classification, so CNN is used for printmaking analysis. Considering that the classification effect of the traditional convolutional neural image classification model is easily affected by the activation function, the T-ReLU activation function is introduced. By utilizing adjustable parameters to enhance the soft saturation characteristics of the model and avoid gradient vanishing, a T-ReLU convolutional model is constructed. A better convolutional image classification model is proposed based on the T-ReLU convolutional model, taking into account the issue of subpar multi-level feature fusion in deep convolutional image classification models. Utilize normalization to analyze visual input, an eleven-layer convolutional network with residual units in the convolutional layer, and cascading thinking to fuse convolutional network defects. The performance test results showed that in the data test of different styles of artificial prints, the GT-ReLU model can obtain the best image classification accuracy, and the image classification accuracy rate is 0.978. The GT-ReLU model maintains a classification accuracy above 94.4% in the multi-dataset test classification performance test, which is higher than that of other image classification models. For the use of visual processing technology in the field of classifying prints, the research content provides good reference value.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] PolSAR image classification based on deep convolutional neural network
    Wang, Yunyan
    Wang, Gaihua
    Lan, Yihua
    Metallurgical and Mining Industry, 2015, 7 (08): : 366 - 371
  • [22] Convolutional Neural Network-Based Image Distortion Classification
    Buczkowski, Mateusz
    Stasinski, Ryszard
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 275 - 279
  • [23] A Visual Attention Based Convolutional Neural Network for Image Classification
    Chen, Yaran
    Zhao, Dongbin
    Lv, Le
    Li, Chengdong
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 764 - 769
  • [24] Improved convolutional neural network based histopathological image classification
    Venubabu Rachapudi
    G. Lavanya Devi
    Evolutionary Intelligence, 2021, 14 : 1337 - 1343
  • [25] Convolutional Neural Network Based on Spatial Pyramid for Image Classification
    Gaihua Wang
    Meng Lü
    Tao Li
    Guoliang Yuan
    Wenzhou Liu
    JournalofBeijingInstituteofTechnology, 2018, 27 (04) : 630 - 636
  • [26] Improved convolutional neural network based histopathological image classification
    Rachapudi, Venubabu
    Devi, G. Lavanya
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (03) : 1337 - 1343
  • [27] Image Classification And Recognition Based On The Deep Convolutional Neural Network
    Wang, Yuan-yuan
    Zhang, Long-jun
    Xiao, Yang
    Xu, Jing
    Zhang, You-jun
    PROCEEDINGS OF THE 2017 2ND JOINT INTERNATIONAL INFORMATION TECHNOLOGY, MECHANICAL AND ELECTRONIC ENGINEERING CONFERENCE (JIMEC 2017), 2017, 62 : 171 - 174
  • [28] The Research of Convolutional Neural Network Based on Integrated Classification in Question Classification
    Zhen, Lihua
    Sun, Xiaoqi
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [29] A Convolutional Fuzzy Neural Network for Image Classification
    Korshunova, Kseniya P.
    PROCEEDINGS OF THE 2018 3RD RUSSIAN-PACIFIC CONFERENCE ON COMPUTER TECHNOLOGY AND APPLICATIONS (RPC), 2018,
  • [30] A Quantum Convolutional Neural Network for Image Classification
    Lu, Yanxuan
    Gao, Qing
    Lu, Jinhu
    Ogorzalek, Maciej
    Zheng, Jin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6329 - 6334