OPTIMAL HARDY-TYPE INEQUALITIES FOR SCHRÓDINGER FORMS

被引:0
|
作者
Takeda, Masayoshi [1 ]
机构
[1] Kansai Univ, Dept Math, Suita 5648680, Japan
关键词
DIRICHLET FORMS; PERTURBATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a method to construct a critical Schrodinger form from the subcritical Schrodinger form by subtracting a suitable positive potential. The method enables us to obtain optimal Hardy-type inequalities.
引用
收藏
页码:761 / 776
页数:16
相关论文
共 50 条
  • [31] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [32] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [33] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [34] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [35] ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Zhangabergenova, N.
    Temirkhanova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 81 - 95
  • [36] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114
  • [37] A new approach to Hardy-type inequalities
    Adam Osȩkowski
    Archiv der Mathematik, 2015, 104 : 165 - 176
  • [38] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [39] SOME REFINEMENTS OF HARDY-TYPE INEQUALITIES
    Ciurdariu, Loredana
    JOURNAL OF SCIENCE AND ARTS, 2016, (02): : 129 - 140
  • [40] Hardy-type inequalities via convexity
    Kaijser, S
    Nikolova, L
    Persson, LE
    Wedestig, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (03): : 403 - 417