OPTIMAL HARDY-TYPE INEQUALITIES FOR SCHRÓDINGER FORMS

被引:0
|
作者
Takeda, Masayoshi [1 ]
机构
[1] Kansai Univ, Dept Math, Suita 5648680, Japan
关键词
DIRICHLET FORMS; PERTURBATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a method to construct a critical Schrodinger form from the subcritical Schrodinger form by subtracting a suitable positive potential. The method enables us to obtain optimal Hardy-type inequalities.
引用
收藏
页码:761 / 776
页数:16
相关论文
共 50 条
  • [21] Bilateral Hardy-type inequalities
    Chen, Mu Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 1 - 32
  • [22] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646
  • [23] Discrete Hardy-type Inequalities
    Liao, Zhong-Wei
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 805 - 834
  • [24] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    数学学报, 2013, 56 (02) : 289 - 289
  • [25] On Hardy-type integral inequalities
    Leng, Tuo
    Feng, Yong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (10) : 1297 - 1304
  • [26] Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes
    Yusuke Miura
    Journal of Theoretical Probability, 2023, 36 : 134 - 166
  • [27] A note on Hardy-type inequalities
    Gao, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1977 - 1984
  • [28] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [29] ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
    Pales, Zsolt
    Pasteczka, Pawel
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 217 - 233
  • [30] Sharpness of some Hardy-type inequalities
    Lars-Erik Persson
    Natasha Samko
    George Tephnadze
    Journal of Inequalities and Applications, 2023