Equivariant K-Theory and Tangent Spaces to Schubert Varieties

被引:1
|
作者
Graham, William [1 ]
Kreiman, Victor [2 ]
机构
[1] Univ Georgia, Boyd Res & Educ Ctr, Dept Math, Athens, GA 30602 USA
[2] Univ Wisconsin Parkside, Dept Math, Kenosha, WI 53141 USA
关键词
POINTS;
D O I
10.1307/mmj/20216042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tangent spaces to Schubert varieties of type A were characterized by Lakshmibai and Seshadri [LS84]. This result was extended to the other classical types by Lakshmibai [Lak95; Lak00b], and [Lak00a]. We give a uniform characterization of tangent spaces to Schubert varieties in cominuscule G/P. Our results extend beyond cominuscule G/P; they describe the tangent space to any Schubert variety in G/B at a point xB, where x is a cominuscule Weyl group element in the sense of Peterson. Our results also give partial information about the tangent space to any Schubert variety at any point. Our method is to describe the tangent spaces of Kazhdan-Lusztig varieties, and then to recover results for Schubert varieties. Our proof uses a relationship between weights of the tangent space of a variety with torus action and factors of the class of the variety in torus equivariant K-theory. The proof relies on a formula for Schubert classes in equivariant K-theory due to Graham [Gra02] and Willems [Wil06] and on a theorem on subword complexes due to Knutson and Miller [KM04; KM05].
引用
收藏
页码:951 / 969
页数:19
相关论文
共 50 条
  • [31] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5
  • [32] Rigidity for equivariant K-theory
    Yagunov, Serge
    Ostvaer, Paul Arne
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1403 - 1407
  • [33] LOWER EQUIVARIANT K-THEORY
    SVENSSON, JA
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 179 - 201
  • [34] Equivariant representable K-theory
    Emerson, Heath
    Meyer, Ralf
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 123 - 156
  • [35] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19
  • [36] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [37] EQUIVARIANT K-THEORY OF RINGS
    DAVYDOV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 167 - 168
  • [38] EQUIVARIANT CONNECTIVE K-THEORY
    Karpenko, Nikita A.
    Merkurjev, Alexander S.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 181 - 204
  • [39] EQUIVARIANT COMMUNICATION K-THEORY
    DAVYDOV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (06): : 90 - 93
  • [40] EQUIVARIANT ALGEBRAIC K-THEORY
    FIEDOROWICZ, Z
    HAUSCHILD, H
    MAY, JP
    LECTURE NOTES IN MATHEMATICS, 1982, 967 : 23 - 80